Recap I

- Heisenberg's Uncertainty Principle:
 \[\Delta x \cdot \Delta p_x \geq \frac{\hbar}{4\pi} \quad \text{always} \]

 small uncertainty in position \rightarrow large uncertainty in momentum

 uncertainty in position \rightarrow uncertainty in x-component of momentum

- Particle confined in infinitely deep square potential energy well:

 \[U(x) = \begin{cases} 0 & 0 \leq x \leq L \\ \infty & \text{elsewhere} \end{cases} \]

 \[E_n = \frac{\hbar^2}{8mL^2} \quad n^2 = E_n/E_1 \]

 \(n = 1, 2, 3, \ldots \)

 note: \(E_1 > 0 \) ?

 "zero-point energy"
Recap II

- Corresponding wave function:
 \[\Psi_n(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{n\pi x}{L} \right) \] inside well
 \[\Psi_n(x) = 0 \] outside of well \(n = 1, 2, \ldots \)

- Like standing wave on a string of length \(L \) with wavelength:
 \[\lambda_n = \frac{2\pi}{k_n} = \frac{2L}{n} \]

- Spin angular momentum \(\vec{S} \):
 - Intrinsic property of a particle: \(1S_1 = \sqrt{S(S+1)} \hbar^2/2\pi \)
 - For electrons: spin quantum number: \(S = 1/2 \)
 - Component of \(\vec{S} \) along any axis is quantized: \(S_z = m_S \hbar/2\pi \)
 - For electron: spin magnetic quantum number
 \[m_S = +\frac{1}{2} \text{ ("spin up") or } m_S = -\frac{1}{2} \text{ ("spin down") } \]

- Pauli Exclusion Principle: No two electrons confined in the same trap can have the same set of values for their quantum numbers.
Today:

- **Nuclear Physics**
 - The nucleus
 - Radioactive decay
 - Fission
 - Fusion

- **Particle Physics:**
 - What is the Higgs?
Nuclear Physics: The Nucleus

- Positive charge and most of the atom’s mass are concentrated in a tiny dense core of ~ 10^{-15} m to 10^{-14} m in diameter. -> **Atomic nucleus**
- Nuclei are composed of protons (charge = $+e$ per proton) and neutrons (no electric charge)
 - $Z = \#$ of protons
 - $N = \#$ of neutrons
 - Atomic mass number: $A = Z + N$
• Most nuclei are spherical (some are ellipsoidal):

\[- \text{Effective radius:} \quad R = R_0 A^{1/3} \quad \text{where} \quad R_0 \approx 1.2 \times 10^{-15} \text{ m} = 1.2 \text{ fm} \]

(1 femtometer = 1 fermi = 1 fm = 1 \times 10^{-15} \text{ m})

• Element type and chemical properties are determined by Z.

• Different species (as determined by Z and A) are called nuclides.
• **Notation to describe nuclides:**

\[^A_Z X \text{ or } ^A X \]

chemical symbol of element

• **Examples:**

\[
\begin{align*}
_2^4 \text{He} & \quad _8^{16} \text{O} & \quad _{26}^{56} \text{Fe} & \quad _{79}^{197} \text{Au}
\end{align*}
\]

• **Nuclides with same Z but different A (i.e. different N) are isotopes of each other.**

• **Examples:**

\[
\begin{align*}
_2^3 \text{He} & \quad _2^4 \text{He}
\end{align*}
\]
• The black shading indicates the band of stable nuclides.

• Low-mass, stable nuclides have essentially equal numbers of neutrons and protons.

• More massive nuclides have an increasing excess of neutrons.
Most nuclides are not stable and undergo radioactive decay by emitting radiation and transferring into other nuclides.

There are no stable nuclides with \(Z > 83 \) (bismuth).
Radioactive Radiation Types:

Alpha (α) particles
- He\(^{+2}\) nuclei (positively charged).
- Can be stopped by a thick piece of paper or several cm of air.

Beta (β) particles
- Electrons (negatively charged) or positrons (anti-electrons; positively charged).
- Can penetrate several sheets of paper, thin metal foils, \(\sim 1\) m of air.

Gamma (γ)
- Very high energy photons (uncharged).
- Could pass through a human hand.
- Stopped by several cm of lead.
Radioactive Decay:

- Most nuclides are not stable & undergo radioactive decay by emitting radiation & transforming into other nuclides.
- **Radioactive decay is a statistical process**
- **Decay constant λ:**
 - $\lambda = \text{probability that a particular nuclide will decay in a unit time interval; } [\lambda] = 1/s$
 - $\lambda = \text{fraction of nuclei in a large sample that are expected to decay on average per unit time interval}$
 - λ has a characteristic value for every radionuclide.
 - λ is independent of any external influence, including the decay of another nucleus.
Radioactive Decay:

- If a sample has \(N \) radioactive nuclei of a given type then the average number decaying per unit time is \(\lambda N \).

⇒ Define decay rate \(R \) as:

\[
R = -\frac{dN}{dt} = \lambda N = \text{[average number of decays per time]}
\]

⇒ Integrate to \textbf{number of radioactive nuclei vs. time}:

\[
N(t) = N(0)e^{-\lambda t} = N(0)e^{-t/\tau}
\]

with \(N(0) \) = number of radioactive nuclei at \(t = 0 \)

⇒ \textbf{Number of radioactive nuclei decreases exponentially with time constant}:

\[
\tau = \frac{1}{\lambda}
\]
Radioactive Decay: Half Time

- The **half-life** $T_{1/2}$ is the time at which half of the original sample remains:

$$\frac{N(T_{1/2})}{N(0)} = \frac{1}{2} = e^{-T_{1/2}/\tau}.$$

$$T_{1/2} = \tau \ln(2)$$

⇒ **Can rewrite the number of radioactive nuclei vs. time equation:**

$$N(t) = N(0)e^{-t \ln(2)/T_{1/2}} = N(0)(e^{\ln(2)})^{-t/T_{1/2}} = N(0)2^{-t/T_{1/2}} = N(0)(\frac{1}{2})^{t/T_{1/2}}$$
Application: carbon-14 dating:

- Carbon-14 ($^{14}_6\text{C}$) is an unstable isotope of carbon ($T_{1/2} = 5730$ years) which is produced in the upper atmosphere by cosmic ray neutrons colliding with $^{14}_7\text{N}$:

$$^{14}_7\text{N} + \text{n} \rightarrow ^{14}_6\text{C} + \text{p}$$

- This ^{14}C is rapidly oxidized to $^{14}\text{CO}_2$ and thus can enter living organisms through photosynthesis & the food chain.

- In the atmosphere, \[
\frac{[^{14}\text{CO}_2]}{[^{12}\text{CO}_2]} \approx 1.0^{-12}.
\]

- A living organism that derives its carbon from the atmosphere will have the same $[^{14}\text{C}]/[^{12}\text{C}]$ in its tissues.

- But once the organism dies it stops taking in carbon & the amount of ^{14}C in its tissues decreases due to radioactive decay:

$$^{14}_6\text{C} \rightarrow ^{14}_7\text{N} + \beta^-$$
Application: carbon-14 dating:

- By measuring the ratio of $[^{14}\text{C}]/[^{12}\text{C}]$, it can be determined how long it has been since the organism died.
- Because $T_{1/2} = 5730$ years, the ^{14}C dating method is good for ages $\leq \sim 50,000$ years.

^{14}C dating may be complicated because the proportion of ^{14}C in the atmosphere has not been constant. So, other dating techniques are often used as ‘calibrations’ for ^{14}C dating.

Modern human activity has altered the $[^{14}\text{C}]/[^{12}\text{C}]$ in the atmosphere through nuclear weapons tests & the burning of fossil fuels.
Measuring Radiation: Geiger tube radiation detector” *(Geiger counter)*

- Radiation (alpha particles, beta particles, or gamma ray photons) will cause electrons to be ejected from the gas or the metal in the tube.
- That electron will then cause more ejections -> **number of electrons is multiplied** by a factor of about 10^6 to 10^8 before reaching the thin wire.
- Electrons create **a current in the thin wire** at the center of the counter.
Absorbed dose = radiation energy absorbed by an object per unit mass

Units: 1 grey = 1 Gy = 1 J/kg = 100 rad

Example: Radiation dose from natural sources per year:
~ 2 mGy = 0.2 rad
The Nuclear Force:

Protons repel each other because of their charge (electric force).

⇒ A totally different attractive force must bind protons & neutrons together in the nucleus. This nuclear force is thought to be a secondary effect of the strong force that binds quarks together to form neutrons & protons.

⇒ The nuclear force must be a very short range force because its influence does not extend far beyond the nuclear “surface”.

• The atomic mass unit:

The atomic mass unit, u, is chosen so that the atomic (not nuclear) mass of ^{12}C is exactly 12 u.

$$1\text{u} = 1.661 \times 10^{-27} \text{ kg}.$$
$$1\text{u} = 931.494013 \text{ MeV/ c}^2.$$

Atomic mass is often reported in these atomic mass units.
Nuclear binding energy:

$M =$ the mass of a nucleus.

$\sum_i m_i =$ the total mass of its individual protons & neutrons.

$M < \sum_i m_i, \text{ or, } Mc^2 < \sum_i (m_i c^2).$

- The binding energy, ΔE_{BE}, of the nucleus is:

$$\Delta E_{\text{BE}} \equiv \sum_i (m_i c^2) - Mc^2.$$

- It is the energy that would be required to separate a nucleus into its component nucleons.

- The binding energy per nucleon, ΔE_{BE}:

$$\Delta E_{\text{BE}} = \frac{\Delta E_{\text{BE}}}{A}.$$
The "curve of binding energy": A graph of binding energy per nucleon of common isotopes.

More tightly bound.

The Nickel nuclide \(^{62}\text{Ni}\) has the highest binding energy per nucleon.
Nuclear reactions:

• Conserved quantities are electric charge & total number of nucleons.

• The energy Q released in a reaction is:

$$Q = m_i c^2 - m_f c^2 = -\Delta mc^2,$$

where m_i is the total mass of the reactants and m_f is the total mass of the products.

• Recall: $E = mc^2$, so can convert mass to energy!

• $Q > 0$ when some mass is converted to energy.
Nuclear reactions: Example

Alpha decay of ^{238}U:

$$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\alpha$$

Atomic mass of $^{238}\text{U} = 238.05079$ u
Atomic mass of $^{234}\text{Th} = 234.04363$ u
Atomic mass of $^{4}_{2}\text{He} = 4.00260$ u

$\Delta m = m_f - m_i = (234.04363$ u $+ 4.00260$ u $) - 238.05079$ u $= -0.00456$ u

$$Q = -\Delta mc^2 = (0.00456$ u $)c^2\left(\frac{931.5$ MeV/$c^2}{1$ u $}\right) = 4.25$ MeV

• $Q > 0$, so energy is released

• Almost all of this energy released is kinetic energy of the α particle. (Why?)

(U: Uranium; Th: Thorium; α: helium nucleus)
The "curve of binding energy":

Nuclear fusion: light nuclei combine to form a larger nucleus (e.g. in stars)

Nuclear fission: large nucleus is converted to smaller nuclei plus energy (e.g. in nuclear reactor)
Nuclear Fission:

- **Large nucleus** → smaller nuclei, neutrons, & energy.

- **Example:** \[^{235}_{92}U + ^1_0n \rightarrow ^{236}_{92}U^* \] (excited state, unstable)

- \[^{236}_{92}U^* \text{ (one possibility)} \rightarrow ^{141}_{92}Ba + ^{92}_{56}Kr + 3^0_0n \]

- **Induced nuclear fission event:**
 - A neutron is absorbed by the nucleus of a uranium-235 atom, which in turn splits into fast-moving lighter elements (fission products) and free neutrons.
 - More neutrons produced than consumed -> chain reaction.

(U: Uranium; Ba: Barium; Kr: Krypton)
CP-1 was built on a rackets court, under the abandoned west stands of the original Alonzo Stagg Field stadium, at the University of Chicago. The first self-sustaining nuclear chain reaction was initiated in CP-1 on December 2, 1942.
Nuclear Fusion:

- Two or more small nuclei \rightarrow single heavier nucleus, other particles, & energy.

- Example:

\[
\begin{align*}
^1_2H + ^3_1H & \rightarrow ^4_2He + n + \text{energy} \\

\text{Fusion of deuterium with tritium creating helium-4, freeing a neutron, and releasing 17.59 MeV of energy}
\end{align*}
\]
Natural Fusion Reactor: The Sun

The process involves the fusion of hydrogen atoms (protons) to form helium, releasing energy in the form of gamma rays and neutrinos. The reaction can be represented as:

\[^1H + ^1H \rightarrow ^4He + ^4He + 2\gamma + 2\nu \]

This process is central to the energy production in the Sun, and similar reactions are explored for use in artificial fusion reactors.
In 1997, the Joint European Torus produced a peak of 16.1 megawatts (21,600 hp) of fusion power (65% of input power), with fusion power of over 10 MW (13,000 hp) sustained for over 0.5 sec.
Particle Physics: The Standard Model

![Diagram of particle physics, including lepton and quark families, force particles, and their properties.](image)

Leptons

<table>
<thead>
<tr>
<th>First Family</th>
<th>Electron</th>
<th>Electron neutrino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Responsible for electricity and chemical reactions; it has a charge of -1</td>
<td>Particle with no electric charge, and possibly no mass; billions fly through your body every second</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Family</th>
<th>Muon</th>
<th>Muon neutrino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>A heavier relative of the electron; it lives for two-millionths of a second</td>
<td>Created along with muons when some particles decay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Family</th>
<th>Tau</th>
<th>Tau neutrino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Heavier still; it is extremely unstable. It was discovered in 1975</td>
<td>Not yet discovered but believed to exist</td>
</tr>
</tbody>
</table>

Quarks

<table>
<thead>
<tr>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Has an electric charge of plus two-thirds; protons contain two, neutrons contain one</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charm</th>
<th>Strange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>A heavier relative of the up; found in 1974</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Heavier still; measuring bottom quarks is an important test of electroweak theory</td>
</tr>
</tbody>
</table>

Force Particles

<table>
<thead>
<tr>
<th>Gluons</th>
<th>Photons</th>
<th>Intermediate vector bosons</th>
<th>Gravitons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Carriers of the strong force between quarks</td>
<td>Particles that make up light; they carry the electromagnetic force</td>
<td>Carriers of the weak force</td>
</tr>
<tr>
<td>Felt by:</td>
<td>quarks</td>
<td>quarks and charged leptons</td>
<td>quarks and leptons</td>
</tr>
</tbody>
</table>

The explosive release of nuclear energy is the result of the strong force. Electricity, magnetism and chemistry are all the results of electro-magnetic force. Some forms of radioactivity are the result of the weak force. All the weight we experience is the result of the gravitational force.
What is the Origin of Mass?

Fundamental particles do not have any size. Here the different sizes represent the different masses. The masses of neutrinos are so small they would not be visible at this scale.

Why do fundamental particles have such different masses?

How do particles gain mass?

To explain these mysteries, theories predict a new particle, the Higgs particle.

(image courtesy of CERN)
The Higgs Field Theory

To understand the Higgs mechanism, imagine that a room full of physicists chattering quietly is like space filled with the Higgs field ...

A well-known scientist walks in, creating a disturbance as he moves across the room and attracting a cluster of admirers with each step ... this increases his resistance to movement, in other words, he acquires mass, just like a particle moving through the Higgs field.

(cartoons courtesy of CERN)
... if a rumor crosses the room, it creates the same kind of clustering, but this time among the scientists themselves. In this analogy, these clusters are the Higgs particles.

See also: http://youtu.be/RIg1Vh7uPyw

(cartoons courtesy of CERN)
What is the Universe made of?

Faster expansion rate is attributed to a mysterious, dark energy / force that is pulling galaxies apart.

Gravitational lensing and galaxy rotation speeds indicates the presence of dark matter

(image courtesy of NASA)