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Abstract: The Randall-Sundrum I (RS1) model of a warped extra dimension provides a natural
candidate solution to the hierarchy problem between the Planck and weak scales. Coincidentally, the
theoretical development of such ‘braneworld’ models in the late 1990s coincided with the experimental
verification of nonzero neutrino masses. This presents another hierarchy problem: why are neutrino
masses vanishingly small compared to the weak scale? To solve this, Grossman and Neubert have
proposed a ‘generalized see-saw mechanism’ utilizing bulk right-handed neutrinos within the RS1
framework. Such a model is highly constrained by limits on lepton flavor violation, and Kitano has
shown that some fine tuning is required to meet these bounds. In this essay I will present the RS1
model, the Grossman-Neubert extension, and lepton flavor violation from RS1 bulk neutrinos.

Essay 74, The Phenomenology of Extra Dimensions. Extra dimensional models provide an
interesting playground for model building and investigating collider signatures. Candidates are
invited to provide an overview of one of the following extra-dimensional models: ADD
(Arkani-Hamed, Dimopoulos and Dvali), UED (Universal Extra Dimensions) or Randall-Sundrum I.
The candidate should include a calculation of a matrix element squared for a collider signature of the
model.
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1. Introduction: The Spirit of ‘98

After three decades under the hegemony of the Standard Model/Minimally Supersymmetric Standard
Model, the end of the 1990s was marked by surprising new theoretical and experimental directions
beyond the Standard Model. In 1998-‘99, papers by Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1]
as well as Randall and Sundrum (RS1) [2] introduced modern1 extra-dimensional ‘braneworld’ models
that provided novel approaches to the hierarchy problem. The RS1 model, in particular, features a
warped metric that generates a Planck-weak hierarchy with natural O(1) dimensionless parameters.

Just four months after the first of these braneworld papers, the Super-Kamiokande collaboration
published atmospheric neutrino results indicating that neutrinos have non-zero, but very tiny, mass [5].
This was the first experimental result in particle physics that required a modification of the Standard
Model Lagrangian. Just when theorists had made progress on the relation between the Planck and
weak scales, the discovery of these vanishingly small neutrino masses introduced a new hierarchy
problem.

The standard approach to generating this scale is through the see-saw mechanism by which mass-
less left-handed neutrinos mix with a heavy right-handed neutrino to form eV-scale mass eigenstates [6].
However, with the timely development of braneworld models to address the original hierarchy problem,
the natural step would be to look for inherently extra dimensional solutions to the neutrino mass ques-
tion. The RS1 model presents unique challenges for neutrino model-building, since there is neither an
intermediate energy scale available to see-saw neutrino masses nor an appreciable extra dimensional
volume suppression as implemented in the ADD model [7].

Grossman and Neubert have presented a minimal extension to the RS1 model where the right-
handed neutrino, which is a Standard Model gauge-singlet, is allowed to propagate in the bulk [8].
Suitable boundary conditions allow a zero mode that is localized on the hidden brane, utilizing the RS1
warp factor to generate the neutrino mass hierarchy. This generalizes the see-saw mechanism to warped
extra dimensions. Kitano, Cheng, and Li have shown that such a model is constrained by lepton flavor
violation and that experimental bounds force some fine-tuning of model’s parameters [9, 10].

In this essay I review the RS1 model, its extension by Grossman and Neubert, and Kitano’s
calculation of lepton flavor violation from µ → eγ. In Section 2 I present the RS1 model and its
solution to the hierarchy problem. In Section 3 I introduce the formalism of bulk fermions within a
curved space. I then make use of this formalism in Section 4, where I discuss the Grossman-Neubert
extension for neutrino masses. In Section 5 I show that such an extension generates lepton flavor
violation effects that are constrained by experimental bounds; I have included recent experimental
results published after Kitano’s original analysis. My notation and conventions are summarized in
Appendix A. Some calculations regarding the bulk fermion formalism that are not explicit in the
Grossman-Neubert paper are worked out in Appendix B. The details of the calculation of the µ → eγ

amplitude in the Grossman-Neubert extension are presented in Appendix C.

2. The RS1 Model

We begin by describing the RS1 model and the mechanism by which it generates the Planck-weak
hierarchy. A cartoon picture of the model is presented in Figure 1. Our observed space is actually
one of two 3+1 dimensional branes at the endpoints of an interval in a fifth dimension. The bulk 4+1

1Here ‘modern’ is meant to distinguish these from the original braneworld scenarios developed independently in 1982

by Akama [3] and in 1983 by Rubakov and Shaposhnikov [4]. It wasn’t until ADD and RS1, however, that braneworld

models were connected to the hierarchy problem.
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dimensional spacetime is warped in such a way that the induced metric on our brane is conformally
scaled. The measure of this rescaling is the warp factor, which is shown as a red line. We shall see
that this warping also has the effect of rescaling masses relative to the fundamental 5D Planck mass,
thus generating the hierarchy. Before proceeding, some introductory remarks are in order regarding
the nature of branes.

2.1 Welcome to braneworld

Figure 1: RS1 braneworld with the

visible brane represented by Gau-

guin’s “Where Do We Come From?

What Are We? Where Are We Go-

ing?” (1897). The red line depicts

the warp factor, with the φ axis run-

ning from −π to 0.

As prompted by Gauguin’s famous painting in Figure 1, the
natural introductory questions to ask are, “Where do [branes]
come from? What are [branes]? Where are [branes] going?”
Following the typical response of physics students to Post-
Impressionist art, the correct answer for low-energy model-
builders is who cares?

We shall take Sundrum’s model-building definition of a
brane as a 3+1 dimensional surface in a higher dimensional
space where standard model particles are confined to propa-
gate [11]. These objects are solitonic membranes of characteris-
tic width much smaller than the scale of the low-energy effective
theory we seek. The existence of such objects can be motivated
by a high energy theory. In string theory, for example, the end-
points of open strings can be constrained to fall on so-called
D-branes. Randall-Sundrum models, in particular, are reminis-
cent of Horava-Witten domain walls in M-theory [12, 13]. But
more generally, the point is that brane-like topological defects
are allowed to exist in the low-energy effective theory of some
high-energy theory and that the effective theory will be insen-
sitive to the particular high-energy mechanism that generated
the brane2. Thus low-energy theorists needn’t worry about why
or how branes exist, only whether or not realistic models can be
built from them.

The relevant question, then, isn’t where branes come from,
but rather what they can offer as objects in an effective theory. The original Kaluza-Klein ansatz
suffered from the precision data of particle accelerators that constrained the size of an extra dimension
to be much smaller than 10−16 cm. The key insight by Akama, Rubakov, and Shaposhnikov was that
this constraint only holds if Standard Model particles propagate in the extra dimension [3, 4]. If
only gravity is allowed to propagate in the bulk, then the size of the extra dimension is more weakly
constrained by experiments probing Newton’s laws. Hence the braneworld scenario allows us to escape
the glaring observation that everything we see appears to be 3+1 dimensional.

As Rattazzi explains in his Cargese lectures [14], the RS1 scenario takes advantage of the braneworld
scenario in another way. The hierarchy problem can be posed as the question of why the charac-
teristic mass of the weak scale is so much smaller than that of the Planck scale. A particle’s mass
(energy) is identified with its frequency as a quantum field. We already know of a classical mechanism
where frequencies are made small: gravitational redshift. From general relativity we know that the
curvature of space redshifts photons near a massive object. We shall see that the RS1 scenario will

2In fact, the general nonrenormalizability of higher dimensional theories requires such models to be effective theories.
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use the curvature of the five-dimensional bulk to analogously ‘redshift’ the 5D Planck scale into the
4D weak scale.

2.2 Defining the interval: Orbifolding

The extra dimensional interval in the RS1 scenario is formally the orbifold S1/Z2. Orbifolding is the
process by which a manifold is ‘modded out’ by a discrete symmetry [15, 16]. We turn the circle S1,
parameterized by an angular variable φ, into an interval by identifying points φ ∈ [−π, π] via φ = −φ.
This is represented in Figure 2. Orbifolding this way imposes a parity symmetry L(x, φ) = L(x,−φ)
which will play an important role in removing unwanted degrees of freedom in Section 4. The variable
φ still ranges from −π to π but space is completely specified by its values from 0 to π. The resulting
orbifold isn’t a manifold, but rather a ‘manifold with boundary.’

2.3 The wind up: The RS1 action

Figure 2: The RS1 orbifold S1/Z2 is constructed by

identifying points on the circle, figure from [16].

The RS1 set up is given by a five-dimensional
spacetime where the fifth dimension is the orb-
ifold S1/Z2, at the endpoints of which are two
3+1 dimensional branes labeled the visible
and hidden branes. Standard Model fields
are localized the visible brane and only grav-
ity is allowed to propagate in the bulk. The
bulk space is allowed to be curved (we shall
see that it is AdS5), but we will want the vis-
ible brane to be flat with respect to the in-
duced 3+1 dimensional metric. In order to
impose this we allow the branes to contain
uniform 3+1-dimensional energy densities Λvis

and Λhid which we may interpret as brane tensions or brane cosmological constants. Given these
assumptions, the action can be written in terms of a bulk gravitational action SG with brane-localized
actions Svis and Shid.

S = SG + Svis + Shid. (2.1)

As there are no bulk fields, SG is just the 5D Einstein-Hilbert action. The visible brane action Svis

and the hidden brane action Shid are allowed to have localized fields. Thus we can write the above
terms as

SG =
∫

d4x

∫ π

−π

dφ
√

G
{
M3R− Λ

}
(2.2)

Svis =
∫

d4x
√

gvis {Lvis − Λvis}|φ=π (2.3)

Shid =
∫

d4x
√

ghid {Lhid − Λhid}|φ=0 . (2.4)

Here g, gvis, and ghid are the positive determinants of the 5D and brane metrics. The fundamental
scale of the theory is the 5D Planck mass M , R is the 5D Ricci scalar, and Λ is the bulk cosmological
constant. Lvis and Lhid are brane-localized Lagrangians with Lvis assumed to include the Standard
Model. The physics of Lhid are irrelevant to our effective theory3.

3In non-minimal models Lhid can play an important role in accommodating a SUSY-breaking sector.
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Let’s begin with an ansatz for the form of the metric:

ds2 = e−2σ(φ)ηµνdxµdxν − r2dφ2 (2.5)

Here r is the compactification radius, a parameter of our theory. The function σ(φ) must be determined
and is known as the warp factor. One can already see that it will be responsible for the generation
of a large mass hierarchies by ‘redshifting’ 4D proper distance depending on the brane position along
the orbifold interval.

Armed with this ansatz, we would like to determine the classical ground state of the theory using
Einstein’s equation, which relates the Einstein tensor GMN = RMN − 1/2RgMN to the stress-energy
tensor TMN ,

GMN = κ2TMN =
gMN

2M3
Λ +

gMN

2M3
(Λhidδ(φ) + Λvisδ(φ− π)) |M,N 6=5. (2.6)

The right-hand side tells us that the energy momentum tensor is given by the contribution from the
bulk cosmological constant and brane tensions, where brane tension terms are localized by δ-functions
and are zero if the index M or N runs over the fifth dimension. In Section 4 we will add a neutrino to
the bulk action, but such a term will not be relevant for determining the ground state of this theory.
κ2 is a constant proportional to M−3 and is related to the higher dimensional Newton’s constant. We
shall choose our normalization4 to be κ2 = 1

4M3 .
Our strategy will be to apply Einstein’s equation (2.6) to our metric ansatz (2.5) to constrain σ(φ)

and the brane cosmological constant terms.

2.4 The pitch: RS1 background solution

One may follow the original Randall-Sundrum paper [2] and immediately solve Einstein’s equation,
but this is unsatisfying as it requires an awkward combination of brute force and calculational finesse.
Instead, in this section we shall follow the slick and pedagogical approach in Csaba Csaki’s 2004 TASI
lectures [18].

Let us begin by changing to a conformally flat coordinate system by introducing a new coordinate
z such that

ds2 = e−A(z)
(
ηµνdxµdxν − dz2

)
. (2.7)

This allows us to invoke a nice relation between the Einstein tensors of conformally related d-
dimensional metrics gMN = e−A(x)g̃MN , [19]:

GMN = G̃MN +
d− 2

2

[
1
2
∇̃MA∇̃NA + ∇̃M ∇̃NA− G̃MN

(
∇̃K∇̃KA− d− 3

4
∇̃KA∇̃KA

)]
.

In our case, g̃MN = ηMN , so the covariant derivatives become partial derivatives, ∇̃M → ∂M . One
can then read off the 55 and µν components of the Einstein tensor for our metric (2.7),

G55 =
3
2
A′2 (2.8)

Gµν =
3
2
ηµν

(
A′′ − 1

2
A′2

)
. (2.9)

4There is some arbitrariness regarding the constant of proportionality between the Newton’s constant and κ2. Those

who are particularly perturbed by this can peruse the discussion by Robinson [17].
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We will now proceed in two steps and solve Einstein’s equation (2.6) separately for the 55 and µν

components. The first step will determine σ(φ) while the second will constrain Λvis and Λhid.
The 55 component is independent of the brane tension terms and gives

−3
2
A′2 = − 1

4M3
Λe−A(z), (2.10)

from which we can write

A′ = e−A(z)/2

√
− Λ

6M3
. (2.11)

The sign inside the square root imposes a negative cosmological constant Λ < 0, and hence the bulk
space is five dimensional anti-de Sitter (AdS5). We can solve this equation using another trick. Define
f ≡ e−A/2 and plug into equation (2.11) to get

− f ′

f2
=

1
2

√
− Λ

6M3
. (2.12)

The general solution of this differential equation is

e−A(z) =
1

(kz + C)2
, (2.13)

k ≡ − Λ
12M3

. (2.14)

The constant is fixed by imposing e−A(0) = 1, and hence our conformally flat metric takes the form:

ds2 =
1

(k|z|+ 1)2
(
ηµνdxµdxν − dz2

)
. (2.15)

We have made the critical replacement z → |z| to maintain the S1/Z2 orbifold symmetry φ → −φ (i.e.
z → −z). W now invert the definition of the conformal coordinate z and the conformal factor A(z) in
equation (2.7). By integrating r2 dφ2 = (k|z|+ 1)−1dz2 and imposing e−2σ(φ) = (k|z|+ 1)−1, we find
that σ(φ) = kr|φ|, as depicted heuristically in Figure 1. The metric, in (x, φ) coordinates, is thus

ds2 = e−2kr|φ|ηµνdxµdxν − r2dφ2. (2.16)

As promised, the 55 component of Einstein’s equation has fixed the warp factor. We now proceed
to the second step, solving the µν components (2.9). From the form of the µν equation one can already
see the necessity of the brane tensions (2.3-2.4). Because A depends on the modulus of z, the second
derivative terms in (2.9) will generate δ functions at the orbifold boundaries z = 0, z1:

A′′ = − 2k2

(k|z|+ 1)2
+

4k

k|z|+ 1
(δ(z)− δ(z − z1)) . (2.17)

These δ-functions must be compensated by constant energy densities localized on the branes, i.e. brane
tensions. Physically, these brane tensions compensate the 5D bulk cosmological constant so that the
induced 4D brane metric is flat. Inserting equations (2.11) and (2.17) into (2.9),we have

Gµν = −3
2
ηµν

[
4k2

(k|z|+ 1)2
− 4k(δ(z)− δ(z − z1)

k|z|+ 1

]
. (2.18)
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Using the definition of k in (2.14), we see that the first term in Gµν above cancels the bulk cosmological
constant in the energy momentum tensor (2.6). The remaining δ function terms must correspond to
the brane tensions such that

−3
2
ηµν

[
−4k(δ(z)− δ(z − z1))

k|z|+ 1

]
=

ηµν

4M3

[
Λhidδ(z)− Λvisδ(z − z1))

k|z|+ 1

]
. (2.19)

Finally, we discover that the brane tensions must be given by

Λvis = −Λhid =

√
− Λ

24M3
. (2.20)

Let us briefly review what we’ve done. In searching for a background classical ground state of our
AdS5 system with an S1/Z2 orbifold, we used the 55 component of the Einstein equation to determine
the form of the warp factor σ(φ) and then used the µν component to determine the brane tensions.
Let’s now connect this to the hierarchy problem.

2.5 A home run: Generating the hierarchy

In order to explain the hierarchy we will first need to understand the low-energy 4D theory that is
generated by the RS1 scenario. We are especially interested in writing the 4D Planck mass MPl and
the Standard Model masses in terms of the remaining unconstrained 5D parameters M , k (or Λ), and
r. We shall follow the approach in the original RS1 paper [2].

First let us derive MPl. We assume that the radius r is fixed at some constant value. 4D graviton
excitations hµν(x) can be inserted into the metric ‘on top’ of the flat 4D metric as follows,

ds2 = e−2kr|φ|(ηµν + hµν(x))dxµdxν − r2dφ2. (2.21)

Taking the curvature of the hµν(x) perturbation into account, we get an additional contribution to
the bulk gravitational action (2.2),

∆Sg = M3

∫
d4x

∫ π

−π

r dφ e−4kr|φ|√g̃ e2kr|φ|R̃, (2.22)

where g̃µν = ηµν + hµν(x) and R̃ is the 4D Ricci tensor formed by g̃µν . By performing the φ integral
we get a contribution to the 4D effective action whose coefficient is the 4D effective Planck mass MPl.
Explicitly, we have

M2
Pl = M3r

∫ π

−π

dφ e−2kr|φ| =
M3

k

(
1− e−2krπ

)
. (2.23)

The key feature in the above equation is that, unlike the ADD scenario, it is rather insensitive to
the size of the extra dimension r. Further, if we let the 5D parameters take natural values near the
fundamental Planck scale so that k ∼ M , then the 4D Planck mass is the same order as the 5D Planck
mass, MPl ∼ M .

Now consider the generation of the Standard Model masses. The mass scale for the SU(2)×U(1)
weak sector is set by the Higgs vacuum expectation value. In the RS1 model, the Standard Model
Lagrangian is part of Lvis in equation (2.3). The presence of the warp factor in

√
gvis and implicitly in

the contraction of vector indices will force us to rescale our fields to maintain canonical normalization.
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This rescaling will be the source of the exponential suppression of the weak scale relative to the Planck
scale. Consider the Higgs sector on the visible brane,

SH =
∫

d4x
√

gvis

[
gµν
visDµHDνH − λ(|H|2 − v2

0)2
] |φ=π (2.24)

=
∫

d4x e−4krπ
√

g̃
[
e2krπ g̃µνDµHDνH − λ(|H|2 − v2

0)2
]

(2.25)

Now watch carefully, this is the magical part. In order to work in an effective 4D low-energy theory,
we need to canonically normalize our Higgs field H → ekrπH and so we write this above line as

SH =
∫

d4x
√

g̃
[
g̃µνDµHDνH − λ(|H|2 − e−2krπv2

0)2
]
. (2.26)

This tells us that the effective Higgs action takes its usual 4D form with the vacuum expectation value
given by v = e−krπv0. Since masses are generated by the Yukawa terms after electroweak symmetry
breaking, we see that any mass term m0 is also rescaled by the same factor,

m = e−krπm0. (2.27)

This wonderful result states that dimensionful quantities on the brane are warped to the weak scale
while dimensionless parameters are left unchanged.

Unlike the 4D effective Planck mass MPl ∼ M , the masses of the electroweak Standard Model
particles are exponentially sensitive to the product kr. To avoid fine-tuning and a hierarchy problem,
we expect the fundamental dimensionful parameters M , k (or Λ), v0, and 1/r take natural values on
the order of the 5D Planck scale, M . We see from (2.27) that the 15 orders of magnitude between
the Planck and weak scale can be successfully generated with natural values of kr ≈ 30. We’ve
thus eliminated the need for excessive fine-tuning and have provided a natural explanation of the
Planck-weak hierarchy.

It is notable that this is fundamentally different from the ‘solution’ of the hierarchy problem
proposed in the ADD scenario since we have actually explained how the hierarchy is generated from
parameters with natural values. In the ADD model, on the other hand, one only swaps fine-tuning in
the mass parameters for fine-tuning in the radius of compactification.

2.6 Dust under the rug

Before we become overzealous, let us note, for completeness, a few topics that we have swept under the
rug. As these lie beyond the scope of this essay, we will necessarily be brief but will provide references
for further discussion. First of all, we should note that although we have removed fine-tuning from
the Planck-weak hierarchy, the RS1 model contains is finely tuned in the values of the brane tensions
in equation (2.20) that are required for a static background. Physically, one of these tunings permits
the flatness of the 4D metric.

The other tuning is related to our assumption that the radius r is fixed at a reasonable value [18].
In a more complete treatment, we would let r = r(x, φ) be a dynamical degree of freedom called
the radion. It is associated with the 4D scalar component arising from the decomposition of the
5D metric [16]. Because the radion has no potential in our theory, it is a massless particle whose
phenomenology would violate the equivalence principle and Newton’s law. Thus there must be a
mechanism to stabilize the radion moduli and dynamically fix the radius of our extra dimension to
a natural value. A standard solution in the RS1 model is given by the Goldberger-Wise mechanism
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in which radion kinetic and potential terms conspire against one another to create a radion potential
with a desirable vacuum [20]. Reviews of this mechanism are available in [14] and [18].

A few words are also in order about some ‘fancy techniques.’ The RS1 model’s use of an AdS5 bulk
space makes it a natural candidate for formal theorists to think of holography and AdS/CFT connec-
tions to strongly coupled 4D systems. Raman Sundrum has advocated the AdS/CFT correspondence
as a tool for warped space model builders analogous to dimensional analysis: it’s not strictly necessary,
but it a useful check to avoid errors [16]. Useful references for this are [21–23].

Finally, we have not mentioned the collider phenomenology of the Kaluza-Klein (KK) modes of
the RS1 graviton. Unlike the ADD scenario, the graviton couplings with matter are on the order
of the weak scale, not the Planck scale. Thus, instead of a near continuum of KK modes, the RS1
scenario offers a small number of KK excitations that can be individually detected. Above the TeV
scale the gravitons become strongly coupled and one would expect RS1 to break down as an effective
theory and a more fundamental theory of quantum gravity to become relevant [2]. Useful reviews
are [14,16,18,24].

3. Fermions in Extra Dimensions

We now take a short detour to explain the formalism of fermions in curved extra dimensions, which
we shall make use of in Section 4 when we extend RS1 to incorporate bulk neutrinos. Fermions are
described by the spin-1/2 representation of the Lorentz group and transform under combinations of γ-
matrices. These matrices are defined on the Minkowski tangent space of a curved spacetime manifold.
When working with a flat spacetime this is a trivial point since the tangent space is equivalent to
the spacetime itself5. However, in our AdS5 bulk space this is not the case and we must introduce
machinery to connect the bulk space to the tangent space where the γ-matrices live.

3.1 Stairway to the Tangent Space

Our primary tool shall be functions called vielbeins that convert between the curved-space ‘coordinate
frame’ indices and the Minkowski ‘tangent frame’ indices. We will only highlight the relevant points.
A full treatment can be found in chapter 12 of Bertlmann [25] or chapter 13 of Wald [19].

In curved spacetime, the equivalence principle states that at any point x0 it is always possible
to choose locally inertial coordinates XA

x0
such that the metric is Minkowski at that point: gMN (x0) =

ηMN . At this point alone does our coordinate system have the desirable quality of being flat and
isomorphic to the Minkowski tangent frame. Hence at this point we may swap tangent frame indices
with coordinate indices. Our plan is to exploit this property by ‘pulling back’ the metric to any other
point x,

gMN = ηAB ∂MXA
x0

(x) ∂MXB
x0

(x) (3.1)

= ηAB eA
M (x) eB

N (x), (3.2)

where we have defined the vielbein eA
M (x) = ∂MXA

x0
(x), which is a kind of ‘square root’ of the metric.

The vielbein allows us to use the flatness of the special point x0 (or alternatively the freedom to choose
any such point) to convert coordinate frame indices M, N to tangent frame indices A,B. The cost of
this trick is that the vielbein is position-dependent through its dependence on the coordinate system
XA

x0
.

5Note also that we did not need to worry about this when we placed Standard Model on a brane since all Standard

Model fields are confined to propagate in a space with a flat geometry.
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Spacetime indices are raised and lowered with the bulk metric gMN while the tangent space indices
are raised and lowered with the Minkowski metric ηAB . Using this we can construct the inverse vielbein,

eM
A (x) = ηAB gMN (x)eB

N (x). (3.3)

One can then go on to reconstruct general relativity ‘on the tangent frame,’ which the keen reader
may pursue the details in chapter 12 of Bertlmann [25] or the summary by Sundrum in [11]. The
relevant result which we shall cite is the form of the curved space covariant derivative in the tangent
frame,

DM = ∂M +
1
2
ωABM (x)σAB (3.4)

where the γ-matrices in 5D will be defined in the following section and σAB = 1
4 [γA, γB ]. ω is referred

to as the spin connection and replaces the usual Christoffel connection in the spacetime covariant
derivative. The explicit form of the spin connection is quite nasty [11],

ωAB
M =

1
2
gKLe

[A
K ∂[Me

B]
L] +

1
4
gKLgNP e

[A
K e

B]
N ∂[P eC

L]e
D
MηCD, (3.5)

but the point for us will be that it will vanish in the RS1 covariant derivative.

3.2 5D representations of the Clifford algebra and the chirality problem

Now that we’ve established a bridge between spacetime and the tangent space, let us examine the
γ-matrices that live on this 5D tangent space. The γ-matrices satisfy the Clifford algebra and, in five
dimensions, are given by

γA =
{

γµ if A = µ = 0, · · · , 3
−iγ5 if A = 5

, (3.6)

where γ5 is the usual fifth gamma matrix6, γ5 = iγ0γ1γ2γ3. Because these are exactly the usual
4× 4 matrices used in 4D quantum field theory on flat spacetime, our 5D fermions will also be four-
component spinors. γ5, however, is no longer a ‘special’ element of the Clifford algebra that can be
used to define a 4D parity operator. Hence there is no analogous parity operator in 5D; 5D spinors
are Dirac and decompose into the (0, 1/2)⊕ (1/2, 0) representation in 4D.

Naively, this means that one cannot write down a 5D theory that reduces to a chiral 4D theory. If
every 4D fermion originates from a 5D Dirac spinor, then every chiral 4D fermion must be paired with
a sister fermion of the opposite chirality and identical quantum numbers. This chirality problem
is a general feature of extra dimensional models with bulk fermions [16]. It is of particular relevance
since our intent is to include only a bulk right-handed neutrino at low-energies.

In Section 4.2 we will see that we can use the RS1 orbifold to get rid of these extra degrees of
freedom. In fact, orbifolding is a common procedure that extra dimensional model builders can invoke
to write down chiral theories. Fortunately, in RS1 we are given an orbifold ‘for free’ as a feature of the
model. The general strategy is to eliminate parity states that cannot simultaneously satisfy the S1

periodic boundary conditions L(x, φ) = L(x, φ + 2π) and the Z2 symmetry L(x, φ) = L(x,−φ). As an

6It is, in fact, a general feature of the representation of the Clifford algebra in 2n-dimensions that one can define an

additional ‘parity’ element γ2n+1 = iγ1 · · · γ2n that is also the element needed to extend to the (2n + 1)-dimensional

representation. See, for example reference [26].
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illustrative example, let us demonstrate this for the case of a flat extra dimension. Our 5D flat-space
Dirac action takes the form

Sf =
∫

d4x

∫
dφ Ψ̄i/∂Ψ, (3.7)

where Ψ decomposes into 4D chiral spinors ΨL,R and i/∂ ≡ iγM∂M as one might naturally extend
from 4D. The φ component of this sum contains the partial derivative ∂5 = ∂

∂φ , which is odd under
φ-parity. Hence the fields in the term Ψiγ5∂5Ψ = iΨL∂5ΨR − iΨR∂5ΨL must together contribute an
overall minus sign under parity to offset the sign flip of the derivative and preserve the Z2 symmetry.
Thus we see that one of the chiral fields must be φ-odd while the other must be φ-even. In a standard
KK decomposition for a flat extra dimension, however, the odd modes are proportional to sin(nφ).
Thus the zero mode of the odd chiral field vanishes and the ground state of the theory is chiral. This
is a toy version of the warped case in Section 4, but a similar elimination of a zero mode chiral state
will occur, though our eigenfunctions will turn out to be more complicated.

3.3 Fermionic action in a warped extra dimension

At the end of the last section we wrote the fermionic action for a flat extra dimension. In order to
write the fermionic action in curved space we promote the partial derivative to a covariant derivative7,
D. Next, the tangent space index on the γ-matrices must be converted into a spacetime index using
the inverse vielbein. Finally, we insert the usual factor of

√
g. Our fermionic action then takes the

form

Sf =
∫

d4x

∫
dφ

√
g Ψ̄ iγAeM

A (x, φ)DM Ψ, (3.8)

where DM is the covariant derivative defined in equation (3.4). We would like to massage this into a
more useful—if also unsightly—form. Separating out the spin connection term, we have

Ψ̄iγAeM
A (x, φ)DMΨ = Ψ̄iγAeM

A (x, φ)
(

∂M +
1
2
ωBCMσBC

)
Ψ. (3.9)

We now use the following identities,

2γAσBC = [γA, σBC ] + {γA, σBC}, (3.10)[
γA, σBC

]
= γCηBA − γBηCA. (3.11)

The first identity is just the statement that any product can be written as the sum of a commutator
and anticommutator, while the second comes from the definition σBC = 1

4 [γB , γC ]. We insert these
into equation (3.9) and note that the commutator term vanishes by the antisymmetry of ωBCM and the
Clifford algebra. Finally, integrate by parts in the to get the following form of the fermion action [25],

Sf =
∫

d4x

∫
dφ

√
g eM

A (x, φ)
[
Ψ̄iγA←→∂ MΨ +

ωBCM

2
Ψ̄i{γA, σBC}Ψ

]
(3.12)

where
←→
∂ A = 1

2 (∂A −←−∂ A). This form of the action may not seem like much of an improvement, but
we shall see that in RS1 the connection term vanishes.

7For our present purposes this is a purely spacetime-geometric covariant derivative and has nothing to do with the

gauge covariant derivative used to couple fermions to gauge bosons.
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4. Neutrino Masses in RS1

Now that we’ve established the necessary formalism to deal with fermions on curved spacetime we
would like to extend our minimal RS1 model to incorporate low-energy bulk right-handed neutrinos.
After some brief words of motivation, we will discuss the general formalism of a bulk fermion in RS1
and then specialize to the case of bulk neutrino. Finally, we will present a realistic model of naturally
small 4D neutrino masses coming from bulk right-handed neutrinos.

4.1 Leaving braneworld

Let us begin by first motivating our choice to ‘liberate’ a fermionic field from the brane. Our goal
is to recycle the RS1 machinery to explain the neutrino mass scale in the same way that we used it
to explain the weak scale in Section 2. In order to access the exponential warping along the extra
dimension we will have to work with fields propagating in the orbifold dimension.

One might be suspicious that it is ad hoc to allow some fields to propagate in the bulk while its
siblings are confined to a brane. We require a right-handed neutrino to introduce a Dirac neutrino
mass term in our theory. This particle, however, is special because it is a singlet with respect to the
Standard Model gauge group. Hence we may suppose that there is a more fundamental theory that
confines nontrivial gauge group representations to the brane. Just as we didn’t concern ourselves with
the exact mechanism by which our branes originated, we similarly can treat our extension of RS1 as
an effective theory to such a fundamental theory.

The RS1 set up rewards our willingness to insert a bulk neutrino by providing us with a KK
decomposition that allows modes that are localized on the Planck brane and hence can take advantage
of the warp factor to generate a small 4D mass term.

4.2 Bulk fermions in RS1

Let’s now begin to put all of these ingredients together to incorporate bulk fermions into the RS1
model. This section follows the argument set forth by Grossman and Neubert’s pioneering paper on
bulk neutrinos in RS1 [8], though the techniques presented are valid for general species of fermions
placed in the bulk. To clarify the procedure, we shall explicitly label each step along the way.

Step 1. Insert the RS1 metric. We begin by plugging in our RS1 metric (2.16) into the
machinery of the previous section. The inverse vielbein is

eA
M = diag(e−8σ, e−8σ, e−8σ, e−8σ, 1/r), (4.1)

and the metric determinant is g = r2e−8σ, where σ = kr|φ|. Since the metric is diagonal, the only
non-vanishing entries of ωBCM have B = C = M . Thus, by the antisymmetry of ω in its first two
indices, the spin connection term in (3.12) vanishes, as promised.

Step 2. Insert a mass term. When we wrote our fermionic action in curved space in Section
3.3 we did not attempt to incorporate a mass term. In the RS1 model, the orbifold symmetry prevents
us from writing down the naive choice,

∆Lf = −mΨ̄Ψ = −mΨ̄LΨR −mΨ̄RΨL, (4.2)

where the subscripts refer to 4D chiralities ΨL,R ≡ 1
2 (1∓ γ5)Ψ. Recall from our discussion of the

chirality problem in Section 3.2 that the iΨ̄γ5∂φΨ contribution to the kinetic term forced our two
chiral fields to have opposite parities, and thus (4.2) does not obey the L(φ) = L(−φ) symmetry. In
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order to preserve this orbifold symmetry, we must insert a factor to compensate the sign flip under a
φ-parity transformation. Our mass term must then be of the form8

∆Lf = −m · sgn(φ)Ψ̄Ψ. (4.3)

The appearance of sgn(φ) may seem unnatural, but we invoke the idea that our model is an effective
theory. The above mass term can be generated, for example, by the vacuum expectation value of a
bulk Higgs-like field that is odd under φ parity. The details, as usual, are irrelevant to low-energy
physics.

Step 3. Write the bulk fermionic action. We now insert this mass term and the RS1 values
for eA

M and g into our fermionic action (3.12) and integrate by parts, remembering that left-acting
derivatives also act on the vielbein and metric determinant. We end up with the hefty equation,

Sf =
∫

d4x

∫
dφ r

{
e−3σ

(
Ψ̄Li/∂ΨL + Ψ̄Ri/∂ΨR

)− e−4σm · sgn(φ)
(
Ψ̄LΨR + Ψ̄RΨL

)

− 1
2r

[
Ψ̄L

(
e−4σ∂φ + ∂φe−4σ

)
ΨR − Ψ̄R

(
e−4σ∂φ + ∂φe−4σ

)
ΨL

] }
. (4.4)

Step 4. Ansatz for the KK decomposition. The next step is to insert a KK decomposition
in terms of ‘nice’ eigenfunctions. However, due to the curvature from our warp factor, it is not clear
what the ‘nice’ eigenfunctions along our orbifold direction might be. Let us make the ansatz for the
form of the KK decomposition that was proposed by Grossman and Neubert [8],

ΨL,R(x, φ) =
∑

n

ψL,R
n (x)

e2σ

√
r
f̂L,R

n (φ). (4.5)

This peculiar choice will be validated below when we change variables. We shall justify the orthog-
onality of the f̂s shortly. The important feature of our decomposition is that it must reduce the 5D
action (4.4) to a 4D action with a Kaluza-Klein tower of fermions,

S
(4D)
f =

∑
n

∫
d4x

{
ψ̄n(x)i/∂ψn(x)−mnψ̄n(x)ψn(x)

}
, (4.6)

where ψn ≡ ψL
n + ψR

n and the masses mn ≥ 0 are naturally on the order of the weak scale by the RS1
warping mechanism. By imposing that our eigenfunction ansatz (4.5) reduces to (4.6) upon integrating
out φ, we get the following conditions on our eigenmodes f̂L,R

N (φ):
∫

dφ eσ(f̂L,R
n )∗f̂L,R

m = δmn (4.7)
(
±1

r
∂φ −m

)
f̂L,R

n (φ) = −mneσ f̂R,L
n (φ). (4.8)

Explicit calculation of these conditions is performed in Appendix B. The first of these conditions is
the orthonormality condition for our eigenfunctions and justifies our ansatz in equation (4.5). The
second condition is a differential equation whose solution will allow us to write down the functional
form of the f̂L,R.

8Special thanks to Matthew Reece for an illuminating conversation regarding connecting this mass term to the

chirality problem.
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Old variable ‘Nice’ variable Comment
5D coordinate φ t = e−kr(π−|φ|) t ∈ [ε, 1]; ε = e−krπ is the warp factor
Bulk mass m ξ = m

k Ratio of bulk mass to curvature
4D KK mass mn xn = mn

εk Scaled ratio of KK mass to curvature
Eigenfunction f̂L,R

n (φ) fL,R
n (t) =

√
krεf̂L,R

n (t) Satisfies ‘nice’ properties (4.11 - 4.14)

Table 1: A summary of the change to ‘nice’ coordinates and eigenfunctions in step 5.

In addition to these conditions, we also have boundary conditions on our fields coming from our
orbifold boundary conditions. Recall from our discussion of the chirality problem in Section 3.2 that
left-handed and right-handed fields must have opposite φ-parities. Thus, the product of odd and even
φ-eigenfunctions must vanish at the orbifold fixed points at φ = 0 and φ = ±π. Hence our orbifold
symmetry imposes the boundary conditions

f̂L
m(0)∗fR

n (0) = fL
m(±π)∗fR

n (±π) = 0. (4.9)

Step 5. Change to nice variables. Continuing to follow Grossman and Neubert, let’s introduce
new dimensionless variables to simplify the calculations. Instead of φ, we will work with the variable
t ≡ e−kr(π−|φ|) ∈ [ε, 1] where ε = e−krπ is the warp factor on the visible brane and is of order 10−16.
Further, instead of m and mn we will work with parameters

ξ =
m

k
xn =

mn

εk
. (4.10)

Finally, let us scale our eigenfunctions by f̂L,R
n (t) →

√
krεfL,R

n (t). This change of variables is sum-
marized in Table 1. We can now recast our conditions(4.7 - 4.9) into a more natural form,

∫ 1

ε

dt fL,R
m (t)∗fL,R

n (t) = δmn (4.11)

(±t∂t − ξ)fL,R
n (t) = −xntfR,L

n (t) (4.12)

fL
m(ε)∗fR

n (ε) = 0 (4.13)

fL
m(1)∗fR

n (1) = 0. (4.14)

Step 6. Determine the zero mode. The zero mode is especially important for our low energy
theory. Fortunately, they are also easy to solve since m0 = 0 implies x0 = 0 and so that the differential
equations (4.12) decouple. The normalized solution is given by

fL,R
0 (t) = fL,R

0 (1) t±ξ ∝ e±mr|φ| (4.15)

|fL,R
0 (1)|2 =

1± 2ξ

1− ε1±2ξ
. (4.16)

Recall that in Section 3.2 we avoided the chirality problem in flat space because the boundary
conditions at the orbifold fixed points forced odd zero modes (corresponding to unwanted chiralities)
to vanish. In our present case a similar mechanism in place. The orbifold boundary condition (4.14)
again forces one of the chiral modes to vanish. Stated in another way, the fact that both the left-
and right-handed solutions are even in φ contradicts with the requirement that they have opposite
φ-parities which we derived from the kinetic term.

We see that at t = 1, corresponding to φ = ±π, the right-handed eigenfunction fR
0 (1) ∝ εξ− 1

2 .
This means that for ξ > 1/2, the right-handed zero mode wave function is suppressed by the warp
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Figure 3: Examples of left- (dashed) and right-handed (solid) eigenmodes fL,R
n with ξ = .45 (left) and

ξ = .55. Boundary conditions are set such that left-handed fields vanish at t = ε, 1. Note that for ξ > 1/2 the

right-handed zero mode fR
0 is strongly localized on the hidden brane t = ε. Figure from [8].

factor at the visible brane. This is illustrated in Figure 3, which displays various left- and right-handed
eigenmodes for ξ < 1/2 and ξ > 1/2. This is exactly how we will utilize the metric to ‘redshift’ our
neutrino masses in the next section.

Step 7. Determine KK modes. With the zero modes understood we move on to determine the
higher KK excitations. We can combine the equations in (4.12) into a single second-order equation,

[
t2∂2

t + x2
nt2 − ξ(ξ ∓ 1)

]
fL,R

n (t) = 0. (4.17)

The general solutions are Bessel functions, which we can write as9

fL,R
n (t) =

√
t
[
aL,R

n J 1
2∓ξ(xnt) + bL,R

n J− 1
2±ξ(xnt)

]
. (4.18)

Imposing our original first-order equations (4.12) as constraints, we see that bL
n = aR

n and bR
n = −aL

n .
So our final form for the eigenfunctions are

fL
n (t) =

√
t
[
aL

nJ 1
2−ξ(xnt) + aR

n J− 1
2+ξ(xnt)

]
(4.19)

fR
n (t) =

√
t
[
aR

n J 1
2+ξ(xnt) + aL

nJ− 1
2−ξ(xnt)

]
. (4.20)

Next we impose our orbifold boundary conditions (4.13 - 4.14), coming from our requirement that the
two chiralities have opposite φ-parity. This gives us a discrete KK spectrum. We are free to choose
either the left-handed modes or the right-handed modes to vanish at the orbifold fixed points t = 0, ε.
Since we noted in step 6 that the right-handed zero mode with ξ > 1/2 gave us the warping that we
wanted, we shall set fL

n (ε) = fL
n (1) = 0.

Our eigenfunctions will be integrated over distributions that are nonsingular in the small parameter
ε. Thus we can determine the coefficients aL,R

n removing terms that diverge in the limit ε → 0. We
find that the properly normalized coefficients are aL

n = 0 and |aR
n |2 = 2/|J1/2+ξ(xn)|2.

4.3 Generalized see-saw from a bulk neutrino

In the previous section we have developed the complete formalism for a bulk RS1 fermion localized
on the hidden brane. Let us now couple this fermion to the Standard Model to develop a model for

9We are actually making the assumption ξ 6= 1
2

+ N with N ∈ Z. The special cases where this does not hold lead to

a decomposition in Bessel functions of the first and second kind, but this case is phenomenologically uninteresting.

– 15 –



neutrino mass. This section continues the procedure used by Grossman and Neubert [8]. Our bulk
neutrino has lepton number L = 1, so that the only gauge-invariant coupling on the brane is given by
a Yukawa term

SH = −
∫

d4x
√

gvis

{
ŷ ¯̀

0(x)H̄0(x)ΨR(x, π) + h.c.
}

. (4.21)

Here the subscript 0 labels fields that have not yet been canonically normalized with respect to the
brane action. Recall that the lepton doublet `0 is left-handed and has its spinor indices contracted
with the bulk neutrino. Thus ΨL does not couple to the Standard Model since ¯̀

LΨL = 0. This is
especially nice because in a high energy theory the RS1 branes would have a finite width leading to
overlap with the KK tower of left-handed bulk neutrinos, and hence weak-scale neutrino masses. Let
us now canonically normalize our fields as in Section 2.5,

SH = −
∑

n≥0

∫
d4x

{
yn

¯̀(x)H̄(x)ψR
n (x, ) + h.c.

}
, (4.22)

yn =
√

kŷ fR
n (1) ≡ zfR

n (1). (4.23)

The second equation defines the effective Yukawa coupling yn to absorb the rescaling of the right-
handed neutrino. The combination z ≡

√
kŷ is dimensionless and naturally O(1). After electroweak

symmetry breaking, the uncharged component of the Higgs doublet gets a vacuum expectation value
v and the Yukawa term (4.21) becomes a neutrino mass term ψ̄ν

LM ψν
R + h.c. in the basis ψν

L =
(νL, ψL

1 , · · · , ψL
n ) and ψR

ν = (ψR
0 , · · · , ψR

n ), with

M =




vy0 vy1 · · · vyn

0 m1 · · · 0
... 0

. . . 0
0 0 · · · mn


 . (4.24)

Here n → ∞ and we have included the Dirac mass terms of the bulk neutrino. Recall that for the
phenomenologically interesting case ν > 1/2, |vy0| ∼ |fR

0 (1)| ¿ 1 and we get a light neutrino from
parameters that take on natural values.

Physical neutrinos have (mass)2 given by the eigenstates of MM†. Define a unitary matrix U such
that U†MM†U is diagonal and such that the mass eigenstates ψ

(phys)
L are given by ψν

L = U−1ψ
(phys)
L .

The neutrino mixing angle θν is then defined such that νL = cos θνν
(phys)
L + · · · , where ν

(phys)
L is the

lightest physical neutrino. The mass of the lightest neutrino mν is

mν = v|y0| cos θν (4.25)

= v|zfR
0 (1)| cos θν , (4.26)

where we have used (4.23) to write y0 in terms of fR
0 (1) and z ∼ O(1). We shall see that experimental

constraints force the mixing angle to be small, so that cos θν ∼ 1. We wrote |fR
0 (1)| explicitly in

equation (4.16), from which we have

|fR
0 (1)| =

√
(2ξ − 1)(1− ε1−2ξ)−1 (4.27)

≈
√

2ξ − 1εξ− 1
2 . (4.28)

Plugging this into equation (4.26), we estimate the lightest neutrino mass to be on the order of

mν ∼ M
( v

M

)ξ+ 1
2

. (4.29)
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This is a powerful result that defines the neutrino mass in terms of the Planck-weak hierarchy. We
have, in a sense, generalized the usual see-saw mechanism which is reproduced for the special case
ξ = 3

2 . We can generate the phenomenologically relevant range of mν between 10−5 eV and 10 eV
with ξ only taking values between 1.1 and 1.5. Once again we witness the miracle of the warp factor:
we are able to construct the weak-neutrino mass hierarchy with bulk dimensionful parameters O(M)
and with dimensionless parameters O(1), i.e. with all parameters taking only natural values.

Now armed with a mechanism to redshift our neutrino masses as we had hoped, let us now flesh
out a more realistic model that accounts for the three generations of observed neutrinos and the
constraints on the mixing angle.

4.4 Two bulk neutrinos are better than one

The first hints of neutrino mass came from solar neutrino oscillations. It is only fitting, then, that any
realistic theory of neutrino masses should properly take into account the mixing between the three low
energy neutrinos. The intuitive extension to three bulk neutrinos fails since the φ-parity of our action
is broken by quantum effects when there are an odd number of bulk fermions [27, 28]. In order for a
model to be anomaly-free, then, it must include an even number of bulk fermions. It turns out that
only two bulk fermions are required to accommodate all experimental parameters of neutrino mass
and mixing. This section will again follow the analysis of Grossman and Neubert [8].

Write the two bulk neutrinos as ΨR
1 and ΨR

2 . The bulk masses m1 > m2 are both on the order of
the fundamental Planck scale. By analogy to equation (4.23), define the effective Yukawa couplings
of the two right-handed zero modes by yiα = ziαεξα− 1

2 , where α = 1, 2 labels the two types of bulk
neutrino, i = e, µ, τ is a flavor index, and ξα is defined by mα/k. As before ziα is dimensionless and
O(1). Note that we already have a hint the origin of the neutrino mass hierarchy since the Yukawa
couplings of the two zero modes differ by a factor of order O(εξ1−ξ2).

Consider the neutrino mass sub-matrix in the brane Lagrangian coming from the left-handed
brane neutrinos and the two right handed zero modes: ψ̄ν

LM0ψ
ν
R + h.c. with ψν

L = (νL
e , νL

µ , νL
τ ),

ψν
R = (ψR,1

0 , ψR,2
0 ), and

M0 =




vεν1− 1
2 ze1 vεν2− 1

2 ze2

vεν1− 1
2 zµ1 vεν2− 1

2 zµ2

vεν1− 1
2 zτ2 vεν2− 1

2 zτ2


 (4.30)

We then diagonalize the 3×3 matrix M0M†
0 to leading order in ε to find that the spectrum of physical

neutrino masses is given by a massless left-handed neutrino ν1, and two light neutrinos with masses
given by

m2
v1

= v2ε2ν1−1 |[eµ]|2 + |[µτ ]|2 + |[τe]|2
|ze2|2 + |zµ2|2 + |zτ2|2 ∼ M2

( v

M

)2ν1+1

(4.31)

m2
v2

= v2ε2ν2−1
(|ze2|2 + |zµ2|2 + |zτ2|2) ∼ M2

( v

M

)2ν2+1

, (4.32)

where we have used the notation [ij] ≡ zi1zj2 − zj1zi2.
Now consider the Maki-Nakagawa-Sakata (MNS) mixing matrix between neutrino flavor and

mass states. We can write the low-energy flavor eigenstates in terms of propagating states, νf =∑
i Ufiνi, where i runs over the three mass eigenstates. From the diagonalization of the mass matrix

– 17 –



Measured Parameter Ref. Constraint Latest Experimental Probe
tan2 θν = 0.005± 0.003 [34] v0z/k ≤ 0.1 Invisible width of the Z0 at LEP
∆m2

21 ∼ 8 · 10−5 eV2 [35] ξ1 ≈ 1.34− 1.37 SNO (solar), KamLAND (reactor)
∆m2

32 ∼ 2.4 · 10−3 eV2 [36] ξ2 ≈ 1.27− 1.29 Super Kamiokande (atmospheric)
|Ue3|2 > few % [37,38] |ze

2| < |zµ
2 |, |zτ

2 | CHOOZ and Super Kamiokande
sin2 2θ23 > 0.92 [36] See equation (4.37) Super Kamiokande (atmospheric)
sin2 2θ12 = 0.86 [35] See equation (4.38) SNO (solar), KamLAND (reactor)
sin2 2θ13 < 0.05 [39] See Table 3 CHOOZ(reactor)

Table 2: Experimental constraints of the Grossman-Neubert model. The results here are updated with the

latest data, summaries are available in [40] and [33].

above and taking the reasonable limit ε → 0, we find

U =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 =




[µτ ]∗

N1

zµ∗
2 [eµ]−zτ∗

2 [τe]∗

N1N2

ze
2

N2
[τe]∗

N1

zτ∗
2 [µτ ]−ze∗

2 [eµ]∗

N1N2

zµ
2

N2
[eµ]∗

N1

ze∗
2 [τe]−zµ∗

2 [µτ ]∗

N1N2

zτ
2

N2


 (4.33)

where N2
1 = |[eµ]|2 + |[µτ ]|2 + |[τe]|2 and N2 = |ze

2|2 + |zµ
2 |2 + |zτ

2 |2. Note that each of the zi
αs are

O(1), so the elements of U are each order unity. Hence the neutrino mixing matrix lacks the strong
hierarchy of the analogous CKM matrix for quarks.

4.5 Realistic phenomenology

Let’s move on to experimental constraints. A summary of relevant experimental constraints is pre-
sented in Table 2. Results in this table have been updated to include new data since the original
analysis in the 1999 Grossman and Neubert paper [8].

There are three types of neutrino mixing data: the flux of solar electron neutrinos compared to
the expected value from hydrogen fusion in the sun, the ratio of muon to electron neutrino flux from
atmospheric neutrinos, and the oscillation of electron antineutrinos from nuclear reactors. Observa-
tions are based on detection of characteristic Cerenkov radiation in heavy water. The three sources
of neutrino data are complimentary and constrain different mixing angles and mass differences. Since
the publication of Grossman and Neubert’s original paper, the Sudbury Neutrino Observatory and
KamLAND reactor experiment have confirmed the large mixing angle MSW model of solar neutrino
oscillations [29–33], so we shall disregard other scenarios that Grossman and Neubert also considered.
At the end of this essay we briefly mention the current status of low energy sterile neutrinos from the
LSND and MiniBooNE collaborations.

First let us consider the neutrino mixing angle between light and heavy modes for a single bulk
neutrino in equation (4.26), which is given in terms of the parameters in the mass matrix (4.24) via

tan2 θν =
∑

n≥1

v2|yn|2
m2

n

=
v2|z|2
ε2k2

∞∑
n=1

2
x2

n

=
1

2ξ + 1
v2
0z2

k2
, (4.34)

where xn are the roots of Jν− 1
2
(xn) = 0. This mixing angle is experimentally constrained to be small

from the measurement of the invisible width of the Z0 boson, which constrains the number of light
neutrinos nν = 2.985±0.008 [34]. If all three light neutrinos contain equal mixings of heavy neutrinos,
then nν = 3 cos2 θν , from which we extract the result tan2 θν = 0.005 in table 2. Assuming ξ takes a
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natural O(1) value, this value for tan2 θν requires v0z/k ≤ 0.1, which does not require ‘too much’ fine
tuning. However, natural predictions from bulk RS1 neutrino models are at the edge of experimental
bounds and will be tested by future precision experiments.

Next, let us move on to the ‘realistic’ model with two bulk neutrinos and consider consistency
with the neutrino mass hierarchy. Assuming that the solar and atmospheric neutrino anomalies are
explained by neutrino flavor oscillation, experiments constrain the mass-squared differences ∆m2

ij

between the light neutrinos10. Constraints from solar and atmospheric neutrino data are given in
table 2. In our model with two bulk neutrinos, the lightest neutrino is massless. Thus ∆m2

21 = m2
ν2

and ∆m2
32 ' m2

ν3
. Using equations (4.31-4.32), we are able to use this to constrain our see-saw

parameters ξ1,2. The key result is that ξ1,2 take natural O(1) values with ξ1,2 > 1/2, as we required
for bulk neutrinos localized on the hidden brane.

Finally, consider the low energy MNS matrix U in (4.33). Reactor and atmospheric data limit
|Ue3|2 to be on the order of a few percent [37,38], and so |ze

2| should be smaller than |zµ
2 | and |zτ

2 |. In
the limit where |ze

2|2 ¿ |zµ
2 |2 + |zτ

2 |2, then the angles θ12 and θ23 satisfy:

sin2 θ12 ' 4|ze
1|2(|zµ

2 |2 + |zτ
2 |2)|[µτ ]|2

[|ze
1|2(|zµ

2 |2 + |zτ
2 |2) + |[µτ ]|2]2

(4.35)

sin2 θ23 ' 4|ze
2|2|zτ

2 |2
(|zµ

2 |2 + |zτ
2 |2)2

. (4.36)

The atmospheric anomaly suggests a large νµ ↔ ντ mixing so that sin2 2θ23 > 0.92 [36]. In the limit
where |ze

2| is much smaller than the other two couplings, this constrains

0.64 < |zµ
2 /zτ

2 | < 1.57. (4.37)

Similarly, solar and reactor neutrino data imply sin2 2θ12 = 0.86 [35], implying

|ze
1|

|zµ
1 zτ

2 − zτ
1 zµ

2 |
√
|zµ

2 |2 + |zτ
2 |2 = 0.74. (4.38)

These results are reasonable within the umbrella of naturalness.

5. Lepton Flavor Violation from bulk RS1 neutrinos

Thus far our RS1 model with bulk neutrinos has agreed nicely with experimental data while main-
taining naturalness in its parameters. Theories with massive Dirac neutrinos however, are strictly
constrained by upper bounds on lepton flavor violating processes. These processes are suppressed well
below experimental sensitivity in Standard Model by the GIM mechanism11, but are amplified in
extensions to the Standard Model with massive neutrinos [42]. Lepton flavor violating effects for bulk
neutrinos in RS1 were first calculated by Ryuichiro Kitano, who showed that the Grossman-Neubert
model must be finely-tuned in the Higgs sector in order to meet experimental lepton flavor violation
constraints [9]. Kitano calculated the branching ratio of µ → eγ (see Figure 4) and the analogous ra-
diative decays of the τ . These decays are given by loop diagrams that are summed over all intermediate
Kaluza-Klein modes.
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Figure 4: Heavy neutrinos violate lepton flavor conservation through radiative decay of charged leptons, such

as µ → eγ. This process is calculated to one-loop order in Appendix C, the result is equation (5.1).

5.1 Radiative charged lepton decay

Kitano’s calculation of µ → eγ in the Grossman-Neubert model is done in more detail in Appendix
C. The diagrams that contribute to this process at one loop are shown in Figure 5, where a sum over
massive neutrinos is implied. The result for µ → eγ is given by [9, 10]

M = e
g2mµ

(4π)2M2
W

( ∞∑

i

U∗
µiUeiF

(
m2

i

M2
W

))
ε∗λ(q)ūe(p− q)

[
iσλρqρ(1 + γ5)

]
uµ(p) (5.1)

F (z) =
1

12(1− z)4
(
10− 43z + 78z2 − 49z3 − 18z3 ln z + 4z4

)
, (5.2)

where i sums over the N th KK mode with N → ∞. Note that Kitano’s published result [9] writes
this formula incorrectly12. F diverges when mi = MW , but we expect the light physical modes to
have mν ¿ MW and the heavy modes to have mi À MW . The asymptotic values for F are given by
F (0) = 5/3 and F (∞) = 2/3.

(a) (b) (c) (d)

Figure 5: Diagrams that contribute to the µ → eγ amplitude in equation (5.1). It is implied that one sums

over all neutrino Kaluza-Klein modes in the loop. See Appendix C for more details.

The GIM mechanism suppresses diagrams mediated by light neutrinos mi ¿ MW . However, this
suppression fails in the opposite limit where the Kaluza-Klein excitations are very heavy, mi À MW .
In fact, one might be especially concerned because F (∞) 6= 0 and the sum over the KK tower appears
to diverge. In this limit, however, we are saved by the decoupling of very heavy states from low-
energy processes, i.e. the fact that physics at very small scales shouldn’t affect physics at much larger
scales [45]. Pedagogically this is because processes mediated by a heavy particle are mass suppressed
by their propagators. Kitano demonstrates decoupling analytically by looking at the parenthesis in

10By convention we take ∆m2
ij = m2

νi
−m2

νj
where mν1 < mν2 < mν3

11In a nutshell, the GIM mechanism describes why flavor changing processes cannot occur at tree level by noting that

such amplitudes are proportional to
∑

k UikU∗jk = 0, where U are unitary mixing matrices [41]. Further, such processes

are suppressed at loop level by δm2/M2
W , where, in our case, δm = mν .

12Kitano’s equation (20) forgot the power of four in the denominator which is crucial for convergence when summing

over KK modes. He also did not cite Cheng and Li’s calculation in [43,44]. I have e-mailed him regarding these points.
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equation 5.1) and setting F (m2
i /M

2
W ) → F (∞). By using equation (4.34) and MW ∼ gv, one can

approximate the remaining summed term as

g2

M2
W

∑

i

UeiU
∗
µi ≈

∑
n

(
ze1zµ1

m2
n,1

+
ze1zµ2

m2
n,2

)
(5.3)

=
1

(kε)2
∑

n

(
ze1zµ1

1
x2

n,1

+ ze2zµ2
1

x2
n,2

)
(5.4)

=
1

(kε)2

(
ze1zµ1

4ξ1 + 2
+

ze2zµ2

4ξ2 + 2

)
. (5.5)

The final line is finite, as promised, though it doesn’t provide much physical intuition about the
source of the decoupling. Cheng and Li followed up Kitano’s calculation by explaining that UeAU∗

µA is
proportional to sin2 θA, the mixing of the low energy states with the heavy state A [10]. From (4.34)
and experimental limits we see that this mixing gives the desired decoupling sin2 θA ∼ (mν/mA)2.

5.2 Lepton flavor violation phenomenology

Making use of the approximation (5.5), decay width for radiative muon decay is given by

Γ(µ → eγ) =
e2m5

µ

4(4π)5(εk)4

∣∣∣∣
ze1zµ1

4ξ1 + 2
+

ze2zµ2

4ξ2 + 2

∣∣∣∣
2

(5.6)

= 0.0037
( v

εk

)2
∣∣∣∣
ze1zµ1

4ξ1 + 2
+

ze2zµ2

4ξ2 + 2

∣∣∣∣
2

. (5.7)

The analogous τ decays are given by making the replacements µ → τ , e → µ, e and 0.0037 → 0.00065.
The LAMPF-MEGA and CLEO experiments bound the branching ratios of these decays to be [46–48]

Br(µ → eγ) < 1.2× 10−11 (5.8)

Br(τ → µγ) < 1.1× 10−6 (5.9)

Br(τ → eγ) < 2.7× 10−6. (5.10)

Thus, using the fact that z and ξ are O(1), one can constrain

v

εk
> 0.02. (5.11)

Applying relation (4.10), this gives us a bound on the lowest Kaluza-Klein mass,

mKK ? 25 TeV. (5.12)

This is two orders of magnitude greater than the Higgs vacuum expectation value, so a fine tuning
on the order of 10−2 is necessary. We can go a bit further with this and recast the constraints on the
mixing angles in table 2 in terms of the O(1) Yukawa parameters using (4.34). We first employ the
approximate relations between dimensionless Yukawa couplings

|ze
1| ∼ 0.7|zµ

1 | ∼ 0.7|zτ
1 |. (5.13)

Using this, Grossman and Neubert computed more stringent constraints on the Yukawa couplings,
presented in table 3. These couplings are also pushing the limits of what one might consider natural.
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Family index, i Bulk index, α Constraint on |zi
α| Conditions

e, µ, τ 1 > 0.02 Large angle MSW solution
e 2 > 0.009 Taking sin2 2θ13 = 0.05 [39]

µ, τ 2 > 0.05 Taking sin2 2θ13 = 0.05 [39]

Table 3: Constraints on the effective dimensionless Yukawa couplings |zi
α| from the µ → eγ branching ratio

and the mixing angle constraints in table 2.

6. Summary and further directions

In this essay we have introduced the RS1 model and the Grossman-Neubert minimal extension with
bulk fermions to explain neutrino masses and mixings. This extension is able to use the RS1 warp factor
to generate the neutrino-weak hierarchy and the hierarchy between neutrino masses via a generalized
see-saw mechanism with only natural parameters. We then focused on experimental constraints from
lepton flavor violation in charged lepton decay. This process was able to strictly constrain the lowest
KK mass and Yukawa couplings of the bulk neutrino, but it forced the minimal model into a corner
by requiring levels of fine-tuning. The next source of precision data in the lepton sector would come
from the proposed International Linear Collider (ILC), which will further probe lepton flavor violating
processes [49].

Until then, the model discussed in this essay lends itself to further directions of research. The
formalism developed for bulk RS1 neutrinos is general and can be applied to other fermionic particles.
In particular, Gherghetta and Pomarol have proposed a supersymmetric RS1 where all fields are free
to propagate in the bulk [50]. During the course of this writing [51] appeared. It studies µ → eγ decays
with a bulk Standard Model and two Higgs doublets. One can go further and place all sorts of Standard
Model extensions into the bulk, such as technicolor. Because of its strong suppression in the Standard
Model and sensitivity to particles that couple to leptons and the W boson, lepton flavor violation is a
strong experimental check for physics beyond the Standard Model. Like many signals, unfortunately,
it is difficult to disambiguate between models of extra dimensions and supersymmetry [52] (or even
more exotic models).

One can also continue from the work presented here in one of many orthogonal directions. A recent
constraint on particle physics models comes from early universe cosmology. Studies of the cosmology
of warped extra dimensions [53] can be used in conjunction with dark matter densities to constrain
the relic density of undiscovered heavy particles. In another direction, the general flavor structure of
models with a warped extra dimension have only recently been studied [54]. To the best of this author’s
knowledge, there is yet no published analysis of CP violation in the Grossman-Neubert model. This
may be an interesting topic to study that may yield some insight on CP violation beyond the Standard
Model. Yet another direction involves recent attempts in bottom-up neutrino model-building by Ma
and his collaborators. Ma has proposed of a discrete A4 family symmetry which seems to approximate
observed neutrino mixing results [55]. One might attempt to connect the theoretical prediction of RS1
bulk neutrino mixing to this A4 family symmetry or, conversely, use the A4 symmetry to motivate
non-minimal bulk neutrino extensions to RS1. Again, to the best of this author’s knowledge, there is
yet no published analysis of the compatibility of the Grossman-Neubert model with such bottom-up
predictions.

Finally, the Grossman-Neubert model with two bulk neutrinos would have to be extended to at
least four neutrinos if the lightest neutrino is found to have nonzero mass. This, however, would naively
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suggest the existence of a light sterile neutrino. Recent results from the MiniBooNE collaboration,
however, appear to refute LSND results that suggested the existence of such a particle [56]. To
close, I offer a quote from the anonymous CERN blog Resonaances13 regarding the possibility of
accommodating both LSND and MiniBooNE data within an extra dimensional model: “By shaping
the extra dimensions properly, the model can accommodate the MiniBooNE excess at lower energies as
well as the suppression of oscillations at higher energies. My impression is that, with a little bit more
work, the model could accommodate Harry Potter, too.”
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A. Notation and Convention

There is no globally accepted standard for conventions when dealing with extra dimensions. I will try
to minimize the redefinition of common notation. The effective 4D Planck scale is denoted by the usual
MPl while the fundamental 5D Planck scale is M . Bulk coordinates are indexed with capital Roman
letters from the middle of the alphabet, M,N ∈ {0, · · · , 4}. We parameterize the extra dimension x5

by an angular coordinate, φ, with an associated radius of compactification r. Cartesian coordinates
on the 3-brane are given by the usual lowercase Greek letters, µ, ν ∈ {0, · · · , 3}. The bulk metric is
denoted by gMN and the 3-brane metric denoted by (gvis)µν .

When dealing with fermions it is necessary to work with a little more formalism and distinguish
between the manifold and its tangent space. We shall reserve capital Roman letters (A,B) at the
beginning of the alphabet to index the bulk tangent space. The bulk vielbein is given by eA

M . The
inverse vielbein is denoted with flipped indices, eM

A . We will take the Minkowski metric to be ‘mostly
minus’,

ηAB = diag(+,−,−,−,−) (A.1)

ηαβ = diag(+,−,−,−) (A.2)

In the interests of readability, I have taken the liberty of using different variables relative to some of
the main works cited. As a final point of convention, I apologize for adopting American English and
for its brutalization of ‘proper’ spelling.

13http://resonaances.blogspot.com/2007/04/after-miniboone.html
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B. Properties of the RS1 bulk eigenbasis

Here we derive the orthogonality relation (4.7) and differential equation (4.8) for the f̂(φ) eigenbasis
of the RS1 orbifold direction. These follow from demanding that integrating out φ in the bulk action
gives us the effective action. Recall that the bulk action takes the form (4.4):

Sf =
∫

d4x

∫
dφ r

{
e−3σ

(
Ψ̄Li/∂ΨL + Ψ̄Ri/∂ΨR

)− e−4σm · sgn(φ)
(
Ψ̄LΨR + Ψ̄RΨL

)

− 1
2r

[
Ψ̄L

(
e−4σ∂φ + ∂φe−4σ

)
ΨR − Ψ̄R

(
e−4σ∂φ + ∂φe−4σ

)
ΨL

] }
. (B.1)

We compare this to the effective action for the Kaluza-Klein tower (4.6):

S
(4D)
f =

∑
n

∫
d4x

{
ψ̄n(x)i/∂ψn(x)−mnψ̄n(x)ψn(x)

}
, (B.2)

Finally, recall that the our Kaluza-Klein decomposition is (4.5):

ΨL,R(x, φ) =
∑

n

ψL,R
n (x)

e2σ

√
r
f̂L,R

n (φ). (B.3)

B.1 Orthogonality

The 4D derivative terms should give us that corresponding kinetic terms in the effective theory.
Looking at the left handed components of the these terms, we get

r
{
e−eσ

(
ψ̄L i/∂ ψL

)}
= re−eσ

{(∑
n

ψ̄L
n

e2σ

√
r
f̂L∗

n

)
i/∂

(∑
m

ψL
n

e2σ

√
r
f̂L

n

)}
(B.4)

= re−3σ
∑
n,m

(
e4σ

r
f̂L∗

n f̂L
m ψ̄L

n i/∂ ψL
n

)
(B.5)

= eσ f̂L∗
n f̂L

m (B.6)

The right handed part is the same with L → R. Integrating and comparing to the kinetic term of
(4.6), we see that we get the orthnormality condition (4.7),

∫
dφ eσ(f̂L,R

n )∗f̂L,R
m = δmn. (B.7)

B.2 Differential Equation for f̂

Now consider the remaining terms in the bulk action (4.4). These are (anti)symmetric with respect to
(L ↔ R), so it is sufficient to work with terms of only one chirality. Because of the orbifold symmetry
it is sufficient to assume φ > 0. First consider the term coming from the φ-component of the 5D
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kinetic part of the Lagrangian:

−1
2
Ψ̄L

{
e−4σ, ∂φ

}
ΨR = −

∑
m,n

1
2
(ψ̄L

n

e2σ

√
r
f̂L∗

n )(e−4σ∂φ + ∂φe−4σ)(ψR
m

e2σ

√
r
f̂R∗

m ) (B.8)

= −
∑
m,n

1
2r

ψ̄L
n

{
e2σ f̂L∗

n (e−4σ∂φ + ∂φe−4σ)e2σ f̂R∗
m

}
ψR

m (B.9)

= −
∑
m,n

1
2r

ψ̄L
n e2σ f̂L∗

n

{
e−4σ(2

∂σ

∂φ
+ f̂ ′Rm ) + (−∂σ

∂φ
+ f̂ ′Rm )

}
e2σψR

m (B.10)

= −
∑
m,n

ψ̄L
nψR

m f̂L∗
n (

1
r
∂φ)f̂R

m. (B.11)

Note that corresponding term with L ↔ R has a relative sign. Moving on to the bulk mass term,

−m re−4σΨ̄LΨR = −
∑
m,n

m re−4σ

(
ψ̄L

n

e2σ

√
r
f̂L∗

n

)(
ψR

m

e2σ

√
r
f̂R

m

)
(B.12)

= −m ψ̄L
nψR

m f̂L∗
n f̂R

m. (B.13)

Combining (B.11) and (B.13) and setting equal to the 4D mass term in the effective theory, we have

−
∑

n

mn ψ̄nψn = −
∑
m,n

∫
dφ

{[
ψ̄L

nψR
m f̂L∗

n (
1
r
∂φ)f̂R

m − (L ↔ R)
]

−
[
mψ̄L

nψR
m f̂L∗

n f̂R
m + (L ↔ R)

]}
(B.14)

By using the orthogonality relation (B.7) and combining chiral spinors into Dirac spinors, we finally
get the desired differential equation (4.8) for the f̂ ’s,

(
±1

r
∂φ −m

)
ˆ̂fL,R

n (φ) = −mneσ̂ f̂R,L
n (φ). (B.15)

C. Highlights of the calculation µ → eγ in RS1 with bulk neutrinos

Here we derive the result (5.1) for the radiative decay µ → eγ. The result is given by

M =
∑

i

M(mi), (C.1)

where M(mi) is the amplitude mediated by a neutrino of mass mi. It is sufficient, then, to calculate a
general M(mi), which we will henceforth refer to as M to simplify notation. We provide some details
following the texts by Cheng and Li [43,44]. I have chosen to highlight some details of the calculation
not made explicit in the texts.

C.1 Lorentz structure

Let us begin with the Lorentz structure of the amplitude, M = ελ〈e|JEM
λ |µ〉. We can expand the

bra-ket into the following basis of 4× 4 matrices,

〈e|JEM
λ |µ〉 = ūe(p− q)

{
iqνσλν(A + Bγ5) + γλ(C + Dγ5) + qλ(E + Fγ5)

}
uµ(p). (C.2)
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: All one-loop diagrams that must be considered for the process µ → eγ. Internal gauge particles

are W or Higgs bosons. Diagrams (e)-(h) cannot contribute due to their Lorentz structure.

We can drop the last term in the brackets because ε · q = 0 so it makes no contribution to M(mi)
on-shell. We now invoke the Ward identity, qλ〈e|JEM

λ |µ〉 = 0.

qλ〈e|JEM
λ |µ〉 = 〈e|

{
iqλqνσλν(A + Bγ5) + /q(C + Dγ5)

}
|µ〉 (C.3)

= ūe(p− q)
{
−me(C + Dγ5) + mµ(C −Dγ5)

}
uµ(p). (C.4)

We have made use of the fact that the (A + Bγ5) term vanishes by the antisymmetry of σλν and that
the remaining term can be simplified using q = p + (q− p) and the Dirac equation (/p−m)u(p) = 0 to
swap the /q with me and mµ. Because the resulting expression must vanish, C = D = 0.

Since me ¿ mµ, we can effectively set me = 0. In this case the left and right handed components
decouple, hence A = ±B so that (A + Bγ5) = A(1 ± γ5) becomes a projection operator. Since this
process only occurs for left-handed electrons, we pick A = B and thus our amplitude takes the form
of a magnetic transition,

M = Aūe(p− q)iσλνqν(1 + γ5)uµ(p) (C.5)

= Aūe(p− q)(1 + γ5)(2p · ε−mµγ · ε)uµ(p). (C.6)

In the second line we have made use of the Gordon decomposition, which follows from the anticom-
mutation relations of the γ-matrices and the Dirac equation. A is called the invariant amplitude.
Knowing this form for M allows us to simplify the evaluation of our diagrams. Since we know the full
structure of the final result, we only need to constrain the constant A. Thus we only need to calculate
the component of each diagram that is proportional to (p · ε) ū(1 + γ5)u. All other components of
contributing diagrams must cancel. In particular, the loops in the last four diagrams in Figure 6 only
contribute to the flavor mixing angle. These diagrams thus make no net contribution to the final
amplitude since they are proportional to εµūγµu rather than ū(1 + γ5)u as we require.

C.2 Details of µ → Wνγ → eγ

Let us now demonstrate the machinery for calculating the amplitude Ma of diagram (a) in Figure 6.
The generalization to the other contributing diagrams is straightforward and we will only mention the
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p (p+k)

q

(p-q)

(k+q)k

Figure 7: The assignment of momenta for the calculation of µ → eγ.

results of those analogous calculations. The assignment of momentum variables is shown in Figure 7.
Applying the Feynman rules in ’t Hooft-Feynman gauge,

Ma = −i
∑

i

∫
d4x

(2π)4
ūe(p− q)

(
ig

2
√

2

)
U∗

eiγµ(1− γ5)
i

(/p + /k)−mi

(
ig

2
√

2

)

× Uµiγν(1− γ5)uµ(p)
−igνβ

k2 −M2
W

−igµα

(k + q)2 −M2
W

(−ieΓαβ) (C.7)

Γαβ = (2k · ε)gαβ − (k + 2q)βεα − (k − q)νεβ (C.8)

Where Γ contains the WWγ vertex and the photon polarization. We can simplify this by writing the
spin contraction as Nµν ,

Ma = −i
g2e

4

∑

i

U∗
eiUµi

∫
d4k

(2π)4
NµνΓµν

[(p + k)2 −m2
i ][k2 −M2

W ][(k + q)2 −M2
W ]

(C.9)

Nµν = ūe(p− q)γµ(/p + /k)γν(1− γ5)uµ(p). (C.10)

The natural step is to introduce Feynman parameters to combine the denominators. For our case the
relevant expression is

1
A1

1
A2

1
A3

= 2!
∫ 1

0

dα1 dα2 δ(1− α1 − α2)
[α1A1 + α2A2 + (1− α1 − α2)A3]

3 (C.11)

(C.12)

where the Ai are given by the denominators in (C.9). One finds that

α1A1 + α2A2 + (1− α1α2)A3 = (k + α1p + α2q)2 − (1− α1)M2
W − α1m

2
i ), (C.13)

and hence the denominator becomes ‘nice’ with respect to the momentum integral if we make the
shift k = ` + α1p + α2q. Now recall that our goal is to determine the components of this amplitude
proportional to (p · ε) ū(1 + γ5)u. Inserting this shift into the numerator NµνΓµν we can isolate the
terms proportional to p · ε to get

NµνΓµν = (p · ε)[ū(1 + γ5)uµ] 2mµ[2(1− α1)2 + (2α1 − 1)α2] + · · · . (C.14)

Dropping the other terms (which end up canceling, as argued above), we can now perform the mo-
mentum integration

∫
d4`

(2π)4
1

(`2 − a2)3
=

i

32π2a2
, (C.15)
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where a2 = (1−α1)M2
W +α1m

2
i . Plugging all of this into (C.9) and reading off the ‘invariant amplitude’

A from (C.6), we have

Aa = g2e
∑

i

U∗
eiUµi(p · ε)[ū(1 + γ5)uµ]

∫ 1

0

dα1 dα2
mµ[2(1− α1)2 + (2α1 − 1)α2]
32π2 [(1− α1)M2

W + α1m2
i ]

(C.16)

=
∑

i

ci
mµ

16π2

1
M2

W

∫ 1

0

dα1

(1− α1)2( 3
2 − α1)

[(1− α1) + α1(m2
i /M

2
W )]

, (C.17)

where we’ve written ci = 1
4g2eU∗

eiUµi.

C.3 Results for the remaining diagrams

One can now perform the calculations for the remaining diagrams. The machinery is completely
analogous: combine the denominator with Feynman parameters, shift the momentum variable, and
then isolate the terms proportional to (p · ε) in the numerator. One can then perform the momentum
and α2 integral for these terms. Summing these all together one gets the result (5.1),

M(mi) =
mµ

M2
W

∑

i

ci F (
m2

i

M2
W

) ūe(p− q)iσλνqν(1 + γ5)uµ(p) (C.18)

F (z) =
∫ 1

0

dα
(1− α)

(1− α) + αz
[2(1− α)(2− α) + α(1 + α)z]. (C.19)

The expression for F (z) can be integrated explicitly. This is done in [44] or easily in Mathematica
(there’s no physics to be extracted from this calculation). One ends up with the explicit form in (5.2):
F (z) =

(
10− 43z + 78z2 − 49z3 − 18z3 ln z + 4z4

)
/(12(1− z)4).

One might be concerned that the other diagrams differ by replacing one or both W propagators
with Higgs propagators, and hence it’s not clear that the terms in the invariant amplitudes are all
proportional to e g2mµ/M2

W . However, one can write out the Higgs propagator and couplings to
various particles in terms of MW and we end up with the correct factors as one might be able to guess
from dimensional arguments.
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O. Schneider, D. Scott, T. Sjöstrand, G. Smoot, P. Sokolsky, S. Spanier, H. Spieler, A. Stahl, T. Stanev,

R. Streitmatter, T. Sumiyoshi, N. Tkachenko, G. Trilling, G. Valencia, K. van Bibber, M. Vincter,

D. Ward, B. Webber, J. Wells, M. Whalley, L. Wolfenstein, J. Womersley, C. Woody, A. Yamamoto,

O. Zenin, J. Zhang, and R.-Y. Zhu, Review of Particle Physics, Journal of Physics G 33 (2006) 1+.

[34] A. Sirlin, Ten years of precision electroweak physics, hep-ph/9912227.

[35] SNO Collaboration, B. Aharmim et al., Electron energy spectra, fluxes, and day-night asymmetries of

b-8 solar neutrinos from the 391-day salt phase sno data set, Phys. Rev. C72 (2005) 055502,

[nucl-ex/0502021].

[36] Super-Kamiokande Collaboration, Y. Ashie et al., Evidence for an oscillatory signature in

atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801, [hep-ex/0404034].

[37] CHOOZ Collaboration, M. Apollonio et al., Limits on neutrino oscillations from the chooz experiment,

Phys. Lett. B466 (1999) 415–430, [hep-ex/9907037].

[38] G. L. Fogli, E. Lisi, A. Marrone, and G. Scioscia, Super-kamiokande atmospheric neutrino data, zenith

distributions, and three-flavor oscillations, Phys. Rev. D59 (1999) 033001, [hep-ph/9808205].

[39] Chooz Collaboration, C. Bemporad, Results from chooz, Nucl. Phys. Proc. Suppl. 77 (1999) 159–165.

[40] A. Strumia and F. Vissani, Implications of neutrino data circa 2005, Nucl. Phys. B726 (2005) 294–316,

[hep-ph/0503246].

[41] S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev.

D2 (1970) 1285–1292.

[42] T. P. Cheng and L.-F. Li, mu → e gamma in theories with dirac and majorana neutrino mass terms,

Phys. Rev. Lett. 45 (1980) 1908.

[43] T.-P. Cheng and L.-F. Li, Gauge theory of elementary particle physics. Clarendon Press. (1984) Section

13.3.

[44] T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Particle Physics: Problems and Solutions.

Clarendon Press. (2000) Section 13.4.

[45] T. P. Cheng and L.-F. Li, Effects of superheavy neutrinos in low-energy weak processes, Phys. Rev. D44

(1991) 1502–1509.

[46] MEGA Collaboration, M. L. Brooks et al., New limit for the family-number non-conserving decay mu+

– ¿ e+ gamma, Phys. Rev. Lett. 83 (1999) 1521–1524, [hep-ex/9905013].

– 30 –



[47] CLEO Collaboration, S. Ahmed et al., Update of the search for the neutrinoless decay tau –¿ mu

gamma, Phys. Rev. D61 (2000) 071101, [hep-ex/9910060].

[48] CLEO Collaboration, K. W. Edwards et al., Search for neutrinoless tau decays: tau –¿ e gamma and

tau –¿ mu gamma, Phys. Rev. D55 (1997) 3919–3923.

[49] N. Arkani-Hamed, H.-C. Cheng, J. L. Feng, and L. J. Hall, Probing lepton flavor violation at future

colliders, Phys. Rev. Lett. 77 (Sep, 1996) 1937–1940.

[50] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of ads, Nucl. Phys. B586

(2000) 141–162, [hep-ph/0003129].

[51] E. O. Iltan, Radiative lepton flavor violating decays in the randall sundrum background with localized

leptons, arXiv:0704.4000 [hep-ph].

[52] H.-C. Cheng, K. T. Matchev, and M. Schmaltz, Bosonic supersymmetry? getting fooled at the lhc,

Physical Review D 66 (2002) 056006.

[53] C. Csaki, M. Graesser, C. F. Kolda, and J. Terning, Cosmology of one extra dimension with localized

gravity, Phys. Lett. B462 (1999) 34–40, [hep-ph/9906513].

[54] K. Agashe, G. Perez, and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D71

(2005) 016002, [hep-ph/0408134].

[55] E. Ma and G. Rajasekaran, Softly broken a 4 symmetry for nearly degenerate neutrino masses, Physical

Review D 64 (2001) 113012.

[56] The MiniBooNE Collaboration, A. A. Aguilar-Arevalo et al., A search for electron neutrino

appearance at the δm2 ∼ 1 ev2 scale, arXiv:0704.1500 [hep-ex].

[57] D. Binosi and L. Theussl, Jaxodraw: A graphical user interface for drawing feynman diagrams, Comput.

Phys. Commun. 161 (2004) 76–86, [hep-ph/0309015].

– 31 –


