KEY PARTS OF: INTRALUGAR, SERS, SNU: SUSY, R/M, METASTABLE VIC.

THIS DRAW HEAVY FROM INTRALUGAR 7 SERS, SUSY DEC. SEE ALSO DINE'S
CARGESESE LECTURES FOR A BRIEF SUMMAR.

THE MAIN IDEA IS EASY TO SUMMARIZE:
SUSY, M. VIC. → NON-GENERIC
METASTABLE SUSY, M. VIC. → GENERIC

SINCE SUSY HAS N. SUSY. VA. IT WAS PREVIOUSLY NOT V.IABLE FOR SUSY, M.
EVEN THOUGH IT HAD THE BENEFIT OF DSB SCALE GENERATION. ON
OWNING A SIMPLE SUSY SUSY MODEL TO SOLO WE CAN HAVE DSB E
COST OF METASTABILITY.

ISS WORKS IN A TREE-LEVEL SUSY, M. MODEL WHICH IS DUAL TO AN
ELECTRIC SUSY SUSY THEORY.

INTRODUCTORY REMARKS

- ACCEPT METASTABILITY FROM THE START.
- "NO SUSY VA.\) CONSTRAINTS HOLE OUTF
- ALLU MONT LAUS W/ NON-ZERO UNSEEN INDEX, NO U(1)R.
- STILL REG. COUNTING (can be hidden in W-VAC.
- \[\varepsilon = \frac{1}{\lambda} \frac{\lambda}{\sqrt{V}} \]
- VIABILITY DEPENDS ON PARAMETRICALLY LARGE RIDE
- OLD MODELS OF SUSY: SCAFFOLLE WHEN VA. E LARGE FIELDS
- ISS MODEL: VA. @ SMALL EXPECTATION VALUES
- FIX \(\lambda \), \(\varepsilon \rightarrow \infty \): SUS. UNSCAFFALED @ UE VA. NOT SPECIFIC.
- LAMINAR POT OF LIGHT MODES SMOOTH, VA. E SMALL BUT DECO EV.
- \(\varepsilon \) CAN'T CONTROL DECO EV. BUT CAN STILL GET A LOT OF VA.

MAIN EXAMPLE (HOMOCHARGE REG. AS 'ISS MODEL')

\(n = 1 \) SQCD WITH \((N+1) \) F < \(\frac{3}{4} H \) F, FIFTH RANK CONTINUED IN UP
12 T H W/ SCF. SUSY @ TREE LEVEL BY RANK CONDITION
\((\text{e}^2 \text{P.26 fg}) \)

UV T H: CIV POT IS NOT IP ANGULAR. LOW E EFF POT IS ORBITAL ON
INCLUDING UV EFFECTS.
2. THE MACRO MODEL, PART I

CHIRAL SE: \[W = h \text{Tr} \, \tilde{q} \tilde{c} \tilde{c} - h \eta^2 \text{Tr} \, \tilde{q} \tilde{c} \]

\[W = h \eta^2 \tilde{q} \tilde{c} \tilde{c} - h \eta^2 \tilde{q} \tilde{c} \tilde{c} \]

\[K = \text{Tr} \, \tilde{q} \tilde{q} + \text{Tr} \, \tilde{q} \tilde{q} + \text{Tr} \, \tilde{q} \tilde{q} \]

\[= K_{\text{con}} \]

NOTE: \[W = h \text{Tr} \, \tilde{q} \tilde{c} \tilde{c} - h \eta^2 \text{Tr} \, \tilde{q} \tilde{c} \]

\[\text{MOST GENERAL} \]

\[W \text{ ON SYST.} \rightarrow SU(N) \times SU(N) \]

\[\text{BECOMES GLOBAL SYM} \rightarrow SU(N) \times SU(N) \]

\[U(1) \times U(1) \]

\[U(1) \times U(1) \]

\[\text{F} > N \Rightarrow \text{F-TEENS CANNOT ALL BE SET TO ZERO} \]

\[\text{SUPPLY RANK CONDITION} \]

\[\text{CLASSICAL HÖNNL SPACE} \text{ (UP TO SYMMETRY)} \]

\[\Phi = \left(\begin{array}{c} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{F-N} \end{array} \right) \]

\[\Phi = \left(\begin{array}{c} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{F-N} \end{array} \right) \]

\[\Phi^T = \left(\begin{array}{c} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{F-N} \end{array} \right) \]

\[V_{\text{vac}} = (F-N) |h^2 \tilde{q} \tilde{q}| \]

VACUUM THAT PRESERVES UNBROKEN FLAVOR RGT (MAX UNBROKEN GLOBAL SYM)

\[\Phi_0 = 0 \]

\[\Phi_0 = 0 \]

\[\tilde{q} = \left(\begin{array}{c} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{F-N} \end{array} \right) \]

\[(2.7) \]

EXPAND ABOUT THIS VACUUM TO IDENTIFY LIGHT FIELDS

\[\Phi = \left(\begin{array}{c} \delta \gamma \\ \delta \delta^T \\ \delta \delta \end{array} \right) \]

\[\Phi = \left(\begin{array}{c} \delta \gamma \\ \delta \delta^T \\ \delta \delta \end{array} \right) \]

\[\tilde{q} = \left(\begin{array}{c} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{F-N} \end{array} \right) \]

\[\tilde{q}^T = \left(\begin{array}{c} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{F-N} \end{array} \right) \]

\[\text{THIS JUST DEFINES A SET OF FIELDS WITH SIMPLIFIED NAMES.} \]
WE WANT TO SEE HOW W GIVES TREE-LEVEL MASSES TO THESE FIELDS.

CLAIM:
1. NOT ALL FIELDS GET MASSES \(\sim |W| \)
2. GOLDSTONE BOSONS OF BROKEN GLOBAL SYM. (MASSLESS)
 \[
 \left(\begin{array}{c}
 \zeta - \lambda \frac{i}{m} S \frac{S}{m} \\
 \mu \frac{S}{m} S \frac{S}{m}
 \end{array} \right), \quad \Re \left(\frac{k^+}{m} S \frac{S}{m} \right), \quad \Im \left(\frac{k^+}{m} S \frac{S}{m} \right)
 \]
 \[\text{SU(2)} \times \text{SU(2)} \times \text{SU(2)} \times \text{SU(2)} \times \text{SU}(2)
 \]
3. MASSLESS SCALARS ASSOCIATED WITH GAUGE FIELDS PLAT DI: \(\phi \)
 \[\phi \frac{S}{m} \quad \phi \frac{S}{m} = \left(\frac{k^+}{m} S \frac{S}{m} + \text{H.c.} \right)\]

COMMENTS (like a 'proof' but w/o proof):

WE CAN SHOW HEURISTICALLY THAT THE OTHER FIELDS GET TREE-LEVEL MASSES.

\[
W = \hbar \partial i c \phi_i \phi^i c - \hbar \partial i c \phi_i \phi^i c \]

\[\frac{2W}{\partial^2 \phi_i} = \hbar \phi_i \phi^i c - \hbar \phi_i \phi^i c\]

\[\frac{2W}{\partial^2 \phi_i} = \hbar \left(\phi_i \phi^i c - \hbar \phi i \phi^i \right)\]

\[V = \left| W_{\phi} \right|^2 + \left| W_{\phi} \right|^2 + \left| W_{\phi} \right|^2
\]

\[\frac{V}{4} \text{ where we now have } \left| W_{\phi} \right|^2 = \frac{1}{2} \left(\frac{2W}{\partial \phi} \right) \left(\frac{2W}{\partial \phi} \right)^\dagger = \text{Tr} \left(\frac{2W}{\partial \phi} \right)^2\]

THE FACTOR OF \(|W| \) IS COMMON TO ALL TERMS, SET TO 1 FOR NOW.
WE CAN WRITE IN MATRIX NOTATION (IMPLICIT \(\phi \phi \) AS \(\phi \phi \) ABS.);

\[V = |\phi \phi|^2 + |\phi \phi|^2 - |\phi \phi|^2 - |\phi \phi|^2\]

\[|\phi \phi|^2 = \frac{1}{2} \text{ Im} \left(\phi \phi \right) \frac{1}{2} \text{ Re} \left(\phi \phi \right)\]

\[\phi \phi = \left(\begin{array}{c}
 S \left(\mu + \frac{1}{m} \left(S \frac{S}{m} - \phi \frac{S}{m} \right) \right) + \frac{1}{2} \left(\phi \phi \right) \frac{1}{2} \\
 S \left(\mu + \frac{1}{m} \left(S \frac{S}{m} - \phi \frac{S}{m} \right) \right) + \frac{1}{2} \left(\phi \phi \right) \frac{1}{2}
 \end{array} \right)\]

\[|\phi \phi|^2 = |\mu|^2 S \frac{S}{m} S \frac{S}{m} + |\frac{1}{2} \left(\phi \phi \right) \frac{1}{2}|^2\]

In fact, the model is much simpler if we only look at mass terms. Ignore such constant, quartic + cusp LLAGO couplings.
Now consider the \((\phi^2 - \mu^2)\) term

\[
\phi^2 - \mu^2 = \left(\frac{1}{3} (s_{2x} + s_{2y}) (s_{2x} - s_{2y}) \right) \left(\frac{1}{3} (s_{2x} + s_{2y}) (s_{2x} - s_{2y}) \right)
\]

\[
= \left(\frac{1}{3} a_{+}^2 + \frac{1}{3} a_{-}^2 \right) \left(\frac{1}{3} a_{+}^2 + \frac{1}{3} a_{-}^2 \right)
\]

This is usually looking... let's simplify

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\begin{pmatrix}
A^+ & C^+ \\
B^+ & D^+
\end{pmatrix}
=
\begin{pmatrix}
AA^+ + BB^+ \\
CC^+ + DD^+
\end{pmatrix}
\]

We only care about doing something for the trace \((\text{Tr} \text{ implied})\)

\[
\text{Tr} \left| \phi^2 - \mu^2 \right|_{\text{mass}}^2 = \frac{1}{2} \left| 1 \right| (s_{2x} - s_{2y}) \left(s_{2x} - s_{2y} \right)^* \left| 1 \right|^2
\]

\[
\frac{1}{2} \left| (s_{2x} + s_{2y}) (s_{2x} - s_{2y}) \right|^2
\]

\[
= \frac{1}{2} \left[(s_{2x} + s_{2y}) (s_{2x} - s_{2y}) \right]^2
\]

\[
= \frac{1}{2} \left(s_{2x}^2 + s_{2y}^2 \right)^2
\]

Still looks ugly, exp since \(s_{2x} \) goes in as \(1^2 \left| (s_{2x} + s_{2y}) \right|^2 \) but this is easy to fix, as hinted by the paper. Absorb \(s_{2x} \) into \(s_{2y} \):

\[
s_{2x} \to \frac{s_{2x}}{1 + |s_{2x}|}
\]

\[
|\frac{s_{2x}}{1 + |s_{2x}|} = \frac{1}{1 + |s_{2x}|}
\]

Now split \(s_{2x}\) into \(\text{Re} + i \text{Im}\) parts. (As a matter of)

\[
s_{2x} = a_+ + ib_+
\]

\[
2 \text{Tr} \left| \phi^2 - \mu^2 \right|_{\text{mass}}^2 = \frac{1}{2} \left[(a_+ + ib_+) (a_+ + ib_+) \right]^2
\]

\[
= \frac{1}{2} \left(a_+^2 + b_+^2 \right) + 2 \left| a_+ b_+ \right|^2
\]

\[
= 2 \left(b_+^2 + a_+^2 \right) + 2 \left| a_+ b_+ \right|^2
\]

\[
= 2 \left(a_+^2 + b_+^2 \right) - 2 \left(a_+^2 + b_+^2 \right)
\]

\[
= 4a_+^2 - 4b_+^2
\]

\[
= 4 \left| \text{Im} (s_{2x}) \right|^2 + 4 \left| \text{Re} (s_{2x}) \right|^2
\]

\[
\left| \phi^2 - \mu^2 \right|_{\text{mass}}^2 = \left| 4 \left| \text{Im} (s_{2x}) \right|^2 + 4 \left| \text{Re} (s_{2x}) \right|^2 \right|
\]

\[
\left| \phi^2 - \mu^2 \right|_{\text{mass}}^2 = \left| 1 \left| \text{Im} (s_{2x}) \right|^2 + 1 \left| \text{Re} (s_{2x}) \right|^2 \right|^2
\]

So we see: \(\text{Tr}, \text{Re}, \text{Im}, \text{Im} (s_{2x}), \text{Re} (s_{2x})\) all get tree level masses.

So we've seen that the fields that are massive are indeed those that is what meant: mostly.

What remains to figure out: identify fields bosic, \(\pi, \mu, \eta\), flat directions.
Consider the 1-loop effective potential in \bar{g} of $\{\phi_0, \phi_\pm, \phi_\mp = \pm i \phi_\pm\}$

$$V^{(i)} = \left[\hbar^2 \lambda^2 \left(\frac{1}{2} a \text{Tr} S^2 + b \text{Tr} S^0 + b \text{Tr} S^\pm + b \text{Tr} S^- \right) \right] + \ldots$$

NUMERICAL COEFFICIENTS

This form comes from global symmetries of the potential.

I don't quite understand the statement underneath it. It says this is equivalent to saying that only planar diagrams contribute, e.g., (see below).

PUTTING IN CLASSICAL MASSES (This is done in Appendix B, p. 155)

- $a = \frac{\log 2 - 1}{8 \pi^2} (F - N)$
- $b = \frac{\log 4 - 1}{8 \pi^2} N$

LET'S TRY TO SPEECH WHAT'S GOING ON:

$$V^{(i)} = \frac{1}{\Lambda^2} \left(\text{Tr} M^\pm - \text{Tr} M_0 \right)$$

Treat $\text{Tr} M_0$ as classical g_0 (3-d space, labelled by x_μ, θ)

$$\Phi = \left(\begin{array}{c} \phi_0 \\ \phi_+ \\ \phi_- \end{array} \right) \quad \theta = \left(\begin{array}{c} \theta_0 \\ \theta_+ \\ \theta_- \end{array} \right)$$

The apparatus yields:

$$\langle V^{(i)} \rangle = \text{const} + \left(\frac{1}{2} g_0^2 \left(\sum_{i=1}^{n} x_i^2 \right) \right)^2 + b(F - N) \left(x_0 \right) + \ldots$$

CLASSICAL MASSES:

- Put $\phi_0, \phi_\pm, \phi_\mp$ into classical superpotential

$$W = \hbar \text{Tr} \left[U + \Phi' \Phi - \hbar^2 \text{Tr} \right]$$

$$W = \hbar \text{Tr} \left[e^{\lambda \Phi} \text{Tr} \Phi' \Phi + e^{-\lambda \Phi} \text{Tr} \Phi' \Phi + e^{\lambda \Phi} \text{Tr} \Phi' \Phi + e^{-\lambda \Phi} \text{Tr} \Phi' \Phi + e^{\lambda \Phi} \text{Tr} \Phi' \Phi - e^{-\lambda \Phi} \text{Tr} \Phi' \Phi + \text{...} \right]$$

OBSERVE:

- Off-diagonal components of Φ' do not contribute
- Φ, Φ', Φ'' only couple to Φ_0 fields Φ, Φ' through cubic or higher ints.
- Mass matrix for these fields will be subtrice

REMAINS TERMS

$$W = \hbar \sum_{i=1}^{n} \left[\left(x_i \phi_0 + \phi_0 \phi_i \right) \phi_i + \phi_0 \phi_i \phi_j \phi_i + e^{\lambda \Phi} \left(\phi_i \phi_j \phi_i \right) \phi_i - e^{-\lambda \Phi} \left(\phi_i \phi_j \phi_i \right) \phi_i \right]$$

This is just $(F - N)$ copies of the form

$$W_{\text{sub}} = \hbar \left(x_0 \phi_0 + \phi_0 \phi_0 + \phi_0 \phi_0 \phi_0 - x_0 \phi_0 \right)$$

This calculation has been done. (See Appendix A, p. 155) It gives a calculation for $\langle V^{(i)} \rangle$. This gives values for a, b above.

THE SUPERSTANDARD ABOVE SHOULD GIVE $V^{(i)}$ AT THE TOP OF THE PAGE

But I'm too damn tired to check.
THE POINT IS THIS: $|\lambda| > 0$.

\Rightarrow THE VACUA ARE STABLE, NO TACHYONIC DIRECTIONS.

SPECTRUM HAS HIERARCHY DICTATED BY MARGINAL IRRELEVANT COUPLING κ

- FIELDS WITH MASSES $\sim |\lambda|$
- PSEUDO NINJAS $\sim |\lambda| / V_{eff}$ FROM V_{eff}
- GOLDSTONES OF BROKEN GLOBAL SUSY REMAIN MASSLESS
- Goldstino is Massless

WORLD MODEL II: DYNAMICAL SUSY RESTORATION

GAUGE $SU(N)$; FOCUS ON $F > 2N$ (IR FEEDER)

λ IS STRONGLY COUPLED FOR $E \gg \lambda$

$e^{-\frac{|\eta|^2}{\lambda^2} + i\eta} = \left(\frac{\lambda}{\lambda^2} \right)^{(F-3N)/2}$ VACUUM $\eta = 0$ (BARE λ)

$V_D = \frac{1}{2} \sum_p (Tr(T^p_h + T^p_q - Tr(T^p_h + T^p_q))$ VACUUM

$\Rightarrow 0$, TRIVIAL VACUUM.

SUSY IS COMPLETELY HIGGSED IN THIS VAC.

SUSY BURNING MECHANISM: SUSY GUAGE FIELDS GET MASS λ

- GOLDSTONES ($\lambda^* h^*_R / |\lambda|$) EXCEPT TO SUSY PSEUDO NINJAS
- PSEUDO NINJAS ($\lambda^* h^*_R / |\lambda|$) GET MASS λ

$\Rightarrow h^*_R, T^p_R$ REMAIN AS MASSLESS NONNINJAS.

NEXT STEP: COMPUTE V_{eff} FOR PSEUDO NINJAS, DETERMINE IF THE PSEUDO ARE STABILIZED BEFORE ADDITIONAL WORK NEEDED! EFFECTS OF SUCH GUAGE FIELDS DROP OUT TO VACUUM θ IN V_{eff} BUT FOR PSEUDO NINJAS.

WHY? TREE LEVEL SPECTRUM OF MASSIVE $SU(N)$ GUAGE FIELDS DO NOT DIRECTLY COUPLE TO SUSY VACUUM! D-TERMS VARY ON PSEUDO SPACE VERSUS v_F FOR SUCH MASSIVE FIELDS, BUT DO NOT COUPLE DIRECTLY TO ANY NONZERO D-TERMS.

THE NET EFFECT OF BRACING $SU(N)$: CONVERTS SUSY VACUA.

WE ALREADY EXPECT THIS (SUSY VACUUM IN SUSY VACUA), BUT TO SEE IT:

$V = \text{Tr} (\eta + \eta^*) - \lambda^2 \eta^2 \Rightarrow \eta^* \eta^0$ GET MASS $\langle \lambda^2 \rangle$, CAN NOT DROP OUT

$w = \text{Tr} (\eta + \eta^*)$ IS SUSY VAC.

$e^{\frac{1}{2} \beta^* + 2} = \frac{\lambda^2}{(N C)} \Rightarrow \text{Tr} (\eta + \eta^*) = N \left(\frac{\lambda^2}{(N C)} \right)^{1/2}$

NOT: WE ARE NOT INCLUDING PLUGS FROM V_{eff} AT ALL λ^2, THIS SCALE DEPENDS FROM EXPRESSING β IN THE 14 DIMENSIONAL COUPLING.
(Continuing: see the SUSY vacua)

\[\langle H^2 \rangle = \Lambda \exp \left(-\frac{2N}{F_N} \right) \exp \left(\frac{1}{F_N} \sqrt{F_N} \right) \Rightarrow \Rightarrow \rangle \Rightarrow \]

For \(|e| \ll 1 \), \(|H| \ll |\Lambda| \).

We have vacuum state \(\langle H^2 \rangle \ll |\Lambda| \).

So we see "Dynamical SUSY Restoration" in a tree-level SUSY model.

- For \(\Lambda \to 0 \), \(|H| \) fixed, the SUSY breaks.
- For \(\Lambda \) large but finite (small non-zero \(|H| \))
 - SUSY vacua come in from 0.
 - In SUS we have metastable SUSY vacua dynamically.

Connection between SUSY & R-Sym.

Macro TH1: \(U(1) \) is SUSY.

Macro TH2: \(U(1) \) breaks to \(U(1) \) (magnetic under SUSY gauge group).

\(\Rightarrow 3 \) SUSY vacua.

For \(\langle H \rangle \) near origin, \(U(1) \) is IR free.

\(\Rightarrow U(1) \) returns as accidental R-Sym of IR theory.

For SUSY near origin \(\Leftrightarrow \) accidental R-Sym.

Effects from the underlying Macro TH1.

Q: Do our results depend on physics at UV cutoff scale \(|\Lambda| \)?

We don't have any control of that physics.

Our only useful parameter is \(|e| \), can assume

\[|e| = \left| \frac{1}{\Lambda} \right| \ll 1 \]

Claim: This guarantees that our couplings give dominant effect to low energy eff TH.

\[\Leftrightarrow \Rightarrow \]
Loops from Hennings Lil

These show up as corrections to effective Kahler Pst:

\[SK = \frac{c}{|\lambda|^2} \text{Tr} (\hat{\beta} + \hat{\beta}^2) + \ldots \]

(\[c \text{ is positive.} \quad G(1) \]

Main Argument:

Decompact: Hi-Dim ops. suppressed by powers of \(|\lambda|\)

\[\text{Hence do not affect low-E}. \]

What We Did:

We looked at low-E eff Pst \(\psi^0 \) of SUGRA flat dir.

We focused on light fields \(w \) mass \(\sim \lambda \) (say \(h = 1 \))

We neglected \(w \) mass \(\sim |\lambda|^2 \)

These heavy modes have masses also split by SUSYing.

Could this change our conclusion about decompact or eff Pst?

\[\psi^0 \text{ from } \psi^1 \text{ is proportional to } |\psi^0| \]

\[\Rightarrow \text{Not real analytic in } |\psi|^2 \text{ parameter of superpotential} \]

Why?

The modes we integrated out become massless as \(\lambda \to 0 \),

so contribution to eff Pst is singular there.

On the other hand: corrections from heavier modes \(\sim |\lambda|^2 \)

are necessarily real analytic in \(|\psi|^2 \).

\[\Rightarrow \text{leading correction from microthy to pseudomodulus mass} \]

\[\text{must have coefficient} \]

\[\frac{|\lambda|^2}{|\lambda|^2} = |\lambda|^2 e^2 \ll |\lambda|^2 \]

\[\Rightarrow \text{This is not analytic since it is differentiable } 0. \]

The \(\& \) smaller than low-E modes from thy contributions.

Why? Int cut massless modes for \(\lambda = 0 \) & simplify to \(SK \)

use this corrected \(k \).

\(w \) tree-level \(w \) to find eff on pseudo-flat directions. These corrections are \(\sim |\lambda|^2 e^2 \).

And are negligible.

This makes:

- WIG details of microthy, cannot determine \(\text{vev} \) effects
- For \(\sim |\lambda|^2 \) modes, cannot even determine sign
- Of \(\lambda \) like \(\lambda \), in \(SK \) cannot determine if they stabilize/pseudo-stabilize pseudo-flat directions

This is good that they cannot spoil the stabilization of the microthy, 1-loop effects

This boils down to an obvious discussion of the "irrelevanse of irrelevant operators."
Now reflecting non-trivial: in gauges, macro model we took into account non-perturbative effects in W{k}. These effects are also
suppressed by \(\Lambda_m \).

1. Why is this non-perturbable interaction relevant computed
even though it depends on \(\Lambda_m \)?

2. Why is it justified to neglect other terms in \(W_k \)
which are also suppressed by powers of \(\Lambda_m \)?

\(\Lambda_m \) appears in \(W_k \) as a way to parameterize the IR-ref
gauge coupling \(g_\text{IR} \) scales below \(\Lambda_m \).

This is conceptually different from \(\Lambda_m \) in \(W_k \) which
manifestation has to do with effects from the microscopically
ie phases above \(\Lambda_m \) pole scale.

In other words, \(W_k \) is generated by low-\(E \) physics.

Check: \((\phi, \phi) \rightarrow (\phi, \phi) \approx \Lambda_m \rightarrow \text{leading calc.} \)

2.

Vending contribution to \(\delta k \sim \left| \frac{1}{\Lambda_m} \right| \), corresponding to

\[\Delta W_{\text{Eff}} \sim \left| \frac{1}{\Lambda_m} \right|^2 \sim \left| \Lambda_m \right|^2 \]

for \(\left| e \right| \ll 1 \). \(\Delta W_{\text{Eff}} \sim \left| V_{ij} \right|^2 \) from macro thy.

Higher corrections to \(k \) have more \(\left(\phi / \Lambda_m \right) \) suppression
\(\rightarrow \text{negligible for} \left| \phi \right| \ll \Lambda_m \).

\(\text{From} \left| e \right| \ll 1 \rightarrow \left| h \right| \ll \left(\phi / \Lambda_m \right) \left(\text{PGO} \right) \)

Compare \(\Delta W_{\text{Eff}} \) to \(\Delta W_{\text{Eff}} \), correction from \(W_{\text{kin}} \) in macro.

\[\Delta W_{\text{Eff}} \sim \left| \frac{e h_{\text{PGO}}}{\Lambda_m} \right| \]

For \(\left| \phi \right| \gg \left| \Lambda_m \right| e^\text{PGO} \), \(\Delta W_{\text{Eff}} \) is more important.

For smaller values of \(\phi \), both are negligible.

Conclusion: corrections from \(W_{\text{kin}} \) \& macro modes \(\approx \Lambda_m \)
do not invalidate our conclusions.

Macro models are "indeed control"
\& give dominant contributions to low-\(E \) dynamics.
METASTABLE VACUA IN SO(0)

Now we assemble all these tools & put them to use.

MODEL: SU(N) SO(0) w/ some \(A, F \) quarkes

\[
W = Tr \cdot mM \quad \text{v. non-degenerate}
\]

in such ground states:

\[
\langle M \rangle = (\lambda^{N-F} \det m)^{1 \over N} {1 \over m}
\]

\[
\Rightarrow \langle R \rangle = \langle \delta \rangle = 0
\]

CASE OF INTEREST: \(m_i \) small, same order of magnitude

\[
m_i \ll m_j \quad ; \quad \frac{m_i}{m_j} \sim 1
\]

Consider: \(F > N \); in this limit \(m_i \to 0, m_j/m_i \sim 1 \);

\[
\langle M \rangle \to 0
\]

Can study this model in this limit w/ Seiberg duality:

MAGNETIC THY: SU(F-N) w/ scale \(\bar{\Lambda} \), \(F^2 \) singlets \(M_i \) & F meson quarkes \(\delta, \bar{\delta} \)

free magnetic range \(F < {2 \over 3} N \), max thm 1R field

\[
\Rightarrow \text{metric for moduli space smooth around origin}
\]

\[
K = {1 \over 2} Tr (\delta \delta + \bar{\delta} \bar{\delta}) + \frac{1}{4!\Lambda^2} Tr \cdot M^4 M + ...
\]

\[
\delta, \bar{\delta} > 0, R
\]

\[
\frac{1}{\lambda} \sim 1
\]

Prescribe values cannot easily be degenerate

(not associated w/ holomorphic info)

but qualitative results will not depend on this.

\[
W_{\text{phys}} = {1 \over \bar{\Lambda}} Tr \cdot \tilde{M} \tilde{\delta} + Tr \cdot mM
\]

\[
\lambda^{N-F} \lambda_{F-N} F = (-)^{F-N} \lambda^F
\]

\[
\bar{\Lambda}, \lambda \text{ not uniquely det by electric theory (not know of in mag theoy)}
\]

\[
\text{related to freedom to rescale } \delta, \bar{\delta}
\]

\[
\text{N has a fixed normalization from } W, \text{ can identify } W
\]

w/ \(m_i \) in elec theoy.

Rescaling \(\bar{\delta} \): also affects \(\bar{\delta} \) in \(K, \lambda \)

changes relations between \(B, \bar{\delta} \leftrightarrow \delta, \bar{\delta} \)

\(\lambda \) changes to preserve (i.e.)

\(\text{SU(0)} \text{ relates anomaly f. } \delta \text{ rescaling w/ SO(F-N)} \)
USE FREEDOM TO RESOLVE β, φ TO SET $\beta = 1$

ALTERNATIVELY, RESOLVE β, φ TO SET $B = \varphi = \varphi^{-1}$

BUT: THEN CANNOT COMPUTE (DIMENSIONAL) B.

WE WILL DO BOTH.

CASE: $m_1 = m_0$

SK SUPPRESSED BY Λ, NOT IMPORTANT NEAR $M = 0 = \varphi = 0$

EVALUATE $K(0) = 0$; CORRECTIONS ARE $O(\Lambda^3/\Lambda^3)$ → NEGLIGIBLE

$\Rightarrow K = \frac{\beta}{\Lambda} \text{Tr}(g^2 \mathcal{G} + e^{-2\varphi} g^2) + \frac{\beta}{\Lambda m_0^2} \text{Tr} M M + \ldots$

THEN THIS THEORY MATCHES MACRO MODEL II, USING NOTATION

$\begin{cases}
\varphi = \omega, \\
\varphi = \varphi, \\
\beta = \frac{m}{\Lambda}, \\
h = \frac{\Lambda}{\Lambda} \\
\Lambda^2 = -m_1, \\
\Lambda m = \Lambda, \\
N = (F-N)
\end{cases}$

WHERE WE CHOOSE $\beta = 1$, SET Λ AS PARAM.

CASE: $F = N + 1 \Rightarrow$ MAGNETIC GAUGE GROUP IS TRIVIAL

SCALE g, φ AS IN SECOND CASE ABOVE

$\beta = \varphi = \varphi^{-1}$

THEN

$K = \frac{1}{\Lambda} \text{Tr}(g^2 \mathcal{G} + e^{-2\varphi} g^2) + \ldots \Rightarrow K = \frac{1}{\beta} (\Lambda^{2n-2} (\beta^* B + \beta^* B))$

THE SUPERPOSSENTIAL IS DIFFERENT:

$W = \frac{1}{2} (\Lambda^{2n-1} (B^* M B - \partial \partial M)) + \text{Tr} M M$

(*page 48*)

FOR $N > 2$ THIS IS NEGLIGIBLE NEAR ORIGIN.

\Rightarrow THIS BECOMES SAME AS $N = 1$ THEORY FOR MACRO.

NOW WE JUST USE RESULTS OF β, φ

CONCLUSION: $N^0 \leq F < \frac{3}{2} N$ WILL SUPPRESS THE MASSES

\Rightarrow SOLO HAS METASTABLE SUSY GROUND STATE NEAR ORIGIN

IN FACT, COMPACT MODULI SPACE OF METASTABLE VACUUM

PARAMETERIZED BY GOLDSTONES.

MIRACLE: WE COULD ESTABLISH EXISTENCE OF METASTABLE STATE EVEN

IN STRONGLY SUSY REGIME; VAC PARAM ON JUST 2

DIMENSIONAL $\mathbf{B, \beta}$. THIS RESULT EVEN INCLUDES

NON-SUSY, NON-CENTRAL INPA.
1. Unequal tree-level quark masses, \(m_i \neq m_0 \), \((m_1 < m_N)\)

First consider \(|m_i - m_0| \ll m_0 \ll |m| \) limit.
- Effect of non-degeneracy is small potential on \(m_0 \) state of metastable vac.
- But vac manifold for metastable states is compact so this unequal masses also has metastable vac.

More generally, consider arbitrary \(m_i \ll |m| \).
- Unit \(m_i \) still implies metastable state near origin.
- The macro model I superpotential is modified:
 \[
 W_{\text{vnc}} = h \text{Tr} \phi^0 - h m_i^2 \phi_i^0 \rightarrow W_{\text{vnc}} = h \text{Tr} \phi^0 - h \frac{m_i^2}{m_0^2} h_0^2 \phi_i^0.
 \]

Write \(m_i \) s.t. \(m_1 \geq m_2 \geq \cdots \Rightarrow m_0 \gg 0 \).
- Metastable state \(\phi = 0 \)
- \(\phi^0 = \phi^T = \begin{pmatrix} \phi_0^* \\ \phi_0 \end{pmatrix} \), \(\phi^0 = \text{diag}(\lambda_1, \cdots, \lambda_N) \)
- Nonzero F-terms:
 \[
 F_i; \quad i = (N+1), \cdots, F
 \]
 \[
 V_0 = \sum_{i=(N+1)}^F \lambda_i h_i^2 |1|.
 \]
- Metastable vac \(\Rightarrow \text{casual that } \langle \phi^0 \rangle \) set by \(N \) largest masses.
- Otherwise tree-level spectrum has unstable mode that
 - explodes helplessly to decorrelated vac \(\langle \phi^0 \rangle \) set by \(N \) largest masses.

What about \(m_i \gg |m| \)?
- If all \(m_i \gg |m| \), then no reason to believe metastable state.
- If just one \(m_i \gg |m| \) while other massed small, we can treat as mass perturbation & integrate out.
- Reduce to \(m_i \ll |m| \) less funer (as long as \(F' > N+1 \))
- Our vac eqn analysis still is valid.
- What if we tried to push our luck, \(F = N+1 \rightarrow F' = N \)

2. Changing \(F \) favors \(F \)

\(F = N \) (i.e. \(F = N+1 \rightarrow F' = N \))

If \(m_i \ll m_{i+N} \ll |m| \), we have metastable state.
- \(h_i \neq h_{i+N} \neq 0 \) \(i = 1, \cdots, N \)
- \(h_{i+N} \neq B_0 = 0 \)

Now suppose we can trust this for \(m_{i+N} \gg |m| \).
If we can trust Max II result for $\text{Max} \to [\Lambda]$, then we might understand $F = 1$.

$\textbf{M} = 0 \rightarrow$ gauged NCO constraint: $\text{det} \textbf{M} - \text{BB} = \Lambda^{2n}$

W. smooth k on this scale

Consider tiny around $M = 0$, $B = 0$ = Λ^{N}

k does on fields together to smooth c at that point:

$k = \frac{1}{\text{Vol} \text{M}} \text{Tr} M^{1/2} + \frac{1}{\text{Vol} \text{M}} \text{Tr} \text{M}^{1/2} + \cdots$

λ^{2N} others, two, R, mode.

$B = i\Lambda^{n} \lambda^{n}$

$B = i\Lambda^{n} \lambda^{n}$

Turn on $AW = M \text{Tr} \text{M}$ leaves $\sum_{n \geq 0} \lambda^{2n}$ as lead to unified flat dir.

(Reduce 0 unless 0 by neglectable higher terms in k)

Doubt case W. hope photon 1 and 2 of mass & decay into 1 only (no.)

Such light fields in this case to one reliable call.

Motivated by Pen from $F = N$ they, we expect these are reasonable.

So far, we've focused on $F = N$ window where $\text{Max} \to 1$, $\text{Max} \leq F$.

Let's think about higher values of F.

$F > 3N$:

even this not strongly coupled in 1, $\text{Max} \to$ dynamical, metastable states not present.

$2N < F < 3N$:

$B \to M$, flow to some unattainable fixed point.

Use again magnetic description but need to modify k;

Doubt still valid. Below Λ, only but non magnetic theory is unreliable. (not does)

For nonzero M,

\[V_{\text{mag}} = (N-2) \left(\frac{\text{det} M}{\Lambda^{3N-2}} \right)^{p - \frac{1}{2}} = (N-2) \left(\frac{\text{det} M}{\Lambda^{3N-2}} \right)^{\frac{p - 1}{2}} \]

Near the origin, scales like $M^{2p} > M^{2}$

\[\Rightarrow \langle M \rangle = \left(\frac{\text{det} M}{\Lambda^{3N-2}} \right)^{\frac{1}{N-2}} \] (from p 49)

Is too close to the origin for metastable scale

$F = \frac{3}{2} N$:

Suppose 1d phase with $B/C = 2$ vs up B. func.

When scales, use M^{2}, again cannot be neglected near origin in this case when under Λ. W_{mag} ind of ΛM.
IF MASSES DEGENERATE \(\Rightarrow U(1) \Leftrightarrow U(1) \times U(1) \)
GLOBAL SYMMETRY, HUB VACUA BREAK THIS (CONSISTENT IN MASS GAP)

MEDIABLY VACUUM \(U(1) \Leftrightarrow SU(-N) \times SU(N) \) + ADDITIONAL R

\(\mathcal{M} = \frac{V(F)}{SU(R-N) \times SU(N)} \)

THIS HAS A BIGGER UNITARY SPACE THAN THE ZERO SU VAC

SO COMMONLY YOU FIND MEDIABLY VACUUM

MASS SPECTRUM SUMMARY

- HEMMA HERMATIC STATES \(\text{w} \text{ mass} \sim 1 \)
- DECAY MAGNETIC STATES
- \(N \) TREE-LEVEL MASSES \(\sim \text{WIG} \sim 1 \) (gauged fields, gauginos)
- MASSIVE PSEUDOMODULI \(\sim \text{WIG} \) (NON-FAVORABLE MASSIVE
- MASSLESS SCALARS
- GOSSTONE OF \(\mathcal{M} \)

MASSLESS FIELDS (NC GOSSTONE)

- \(N \) FERMIONIC PARTIALLY \(\sim \text{PSEUDOMODULI} \)

CAJOL FEATURE: \(\mathcal{M} \) WANTS NONTRIVIAL TOPOLOGY.
EXPECT SOLUTIONS \(\mu \) LIFETIME \(\sim \text{MEDIABLY VACUUM} \)

COMMENTS ON LIFETIME OF HS VAC (SEE § 2 FOR MORE DETAILS)

MEDIABLY VACUUM:
\[\mathcal{O} = 0, \quad \bar{\psi} = \psi = (\begin{pmatrix} 1 \\ 0 \end{pmatrix}) \]
\[V_{\psi} = (F-N) \mid N \times \psi \]

SUSY VACUUM:
\[\mathcal{O} = \frac{1}{N} \frac{e^{-iF/2} - 1}{e^{-iF/2} + 1} \]
\[\psi = \bar{\psi} = 0, \quad V_{\psi} = \mathcal{O} \]

AS \(\epsilon \rightarrow 0 \), SUSY \(\mu \) N IS PARAMETRICALLY FAR AWAY.
SEE O'LEARY'S "FACE OF FALSE VAC" FOR CANCELLATION.

THE POINT IS THAT WE CAN GET \(\tau \sim \text{Age of Universe} \).
1. **Naturality**

\[G \sim 1/m_{W}, \quad V \sim 1/m^{2}_{W} \quad \Rightarrow \text{NDUEST} \quad (\text{ANSW} \text{ OF } L) \]

\[\Rightarrow \text{DIFFICES ON FREE PARAMETERS IN} \]

\[\Rightarrow \text{DOES NOT SATISFY FURST'S} \]

\[\text{REQUIREMENT THAT ALL LOW SCALES ARE GENERATED DYNAMICALLY} \]

IDEA: FIND IDEAS IN SAME IDEAS BUT WERE PLACED ON SOME

MARGINAL OR IRRELEVANT CURVATURES.

\[\text{EQ. MASS TUNING WJ OR SUPRESSED BY HURGE: } m_{W} \sim \lambda \lambda \lambda \]

\[\text{OF GEBS DYNAMICAL MODEL, } F_{L} \sim \lambda^{2} \lambda \lambda \lambda \Rightarrow V \sim \frac{\lambda^{2} \lambda^{2} \lambda^{2}}{m_{W}^{2}} \]

2. **Direct Mediation** *(Simpler Model)*

Such sector has large global sym. \(G \) with \(H \to G \) gauged

Identified with (max) of SM gauged group.

\[\text{Eg. GROUP } SU(N) \text{ IN NUKA MODE } \]

\[\text{BELOW A GAUGE GROUP } \xrightarrow{\text{SUBGROUP OF SM}} \]

\[\text{THEN IDENTIFY } V \text{ AS: } SU(F-N) \times SU(F) \to SU(F-N) \times SU(N) \text{ EXPRESSED DIAGONALLY } \]

\[\text{INTO } SU(F-N) \times SU(F) \]

\[\text{BUT: IF WE IDENTIFY } \frac{1}{\sqrt{2}} \text{ SUBGROUPS, WJ H \to G \text{ (MAXIMUM?)} \]

\[\text{THEN THE GAUGE OF THIS SECTOR } \to \text{ MAXIMUM SU(N) FLAVORS} \]

\[\text{TOO MANY FLAVORS } \Rightarrow \text{ CAN HAVE DANGEROUS LOW MAJORAS PIONS} \]

3. **E-SUMMATION PROBLEM** *(lots of H or Higgs)*

- **NONABELO CHANCE 6-WIND MASSES \(\Rightarrow \text{E-SYM MUST BE BROKEN} \)**

- **THIS WILL RESTORE SU(6)** *(GENERICALLY)*

- **CAN SOME UN CANCE**

- **OUR THEOREMS (1)** \(\Rightarrow \text{EXACT E-SYM } \Rightarrow \text{HEAVITently} \)

- **ACCIDENTAL E-SYM NEAR ORGAN**

- **SMALL EFFECT OF EXACT E IN MS STATE MAY BE ENOUGH**

- **TO AVOID E-SYM PROBLEM**

- **AS IT STANDS, CAN AVOID HERE WAS DISAPPEAR (200?) E-SYM**

- **WHAT PRODUCES THIS 6-WIND MASS, A \(\text{IF THESE CAN BE EXACTLY BROKEN} \)**

- **IN NUKA ONLY**

NOTE BOOK