THE BIG PICTURE

WE WANT TO WRITE DOWN MODELS OF REALISTIC SUSY/MG.
THE SUSY GAUGE RULE (ST: M^2 = 0) FORCES A MODULAR STRUCTURE.

MSSM — messengers — SUSY

↑

eq. gauge mediation ...

THE QUESTION IS HOW TO BUILD MODELS FOR THIS SECTOR.

↓

Not as easy as you'd naively think!

eg. 1st model of SUSY is often drafter直辖市

- 3 fields
- Special superpotential

I have to work hard to kill SUSY VACUA!

and SUSY is non-generic (Bushing vacua)

A NICE IDEA IS DYNAMICAL SUSY/MG.

→ DSB — MSSM

BREAK SUSY VIA STRONG DYNAMICS

→ NAbelian, asymmetric free

SUSY SCALE GENERATED BY DIMENSIONAL TRANSLATION

\[
\mathcal{L} = \frac{b}{2\pi i} \log \lambda \rightarrow \lambda = |\lambda| e^{i\theta_m/6}
\]

\[
\frac{4\pi i}{q^2} + \frac{\theta_m}{2\pi}
\]

\[
\lambda \sim \Lambda e^{-\frac{8\pi^2}{6g_0}}
\]

This gives a natural TeV-scale SUSY.
BUT DYNAMICAL SUSY IS EVEN MORE 'NON-GENERIC' THAN OTHER WAYS OF BREAKING SUSY!

- MODELS END UP RATHER COMPLICATED, RED. TRIVIAL SUSY ON, SPECIAL STRUCTURE
- SUSY W (SUSY) HAS ITS OWN PROBLEMS

Strong coupling — "calculability" — use duality

WITTEN INDEX = N

⇒ in low dim. large vacuums, SUSY IS SYM
⇒ IN SUSY VACUA

HISTORICALLY: WITIEN'S CALCULATION OF HIS INDEX WAS THE "NAIL IN THE COFFIN" FOR DYNAMICAL SUSY BREAKING.

A famous exceptional cases, e.g. (3-2), (4-1), ITY models
but it seemed really difficult to construct a DSB sector.

WHAT MAKES SUSY 'GENERIC'?

'no 'fine tuning' or 'special relations' among model parameters.'

USEFUL NOTION OF 'GENERICITY':

'GENERIC' ⇒ n EQUATIONS FOR n UNKNOWNS
GENERALLY HAVE A SOLUTION.

NELSON-SEIBERG R-SYMMETRY THM (WEP 9/93 299)

SU(N) ⇒ R SYMMETRY
SUSY ⇒ SU(N)

(R IS NECESSARY FOR SUSY)
(SUSY IS SUFFICIENT FOR SUSY)

ASSUMPTIONS: GENERIC EFF, CALCULABLE (LAW E THM = WESS-ZUMINO, NO YM)

P1/ R[W] = 2

(W φ, ..., φ n) = φ 1 φ 2 φ 3 , ..., φ n φ 1 φ 2 φ 3

W = 0 ⇒ W = 0 ⇒ φ 1 φ 2 φ 3 , φ 4 , ..., φ n φ 1 φ 2 φ 3 = 0 ⇒ W = 0

⇒ n EQUATIONS FOR (n-1) UNKNOWNS
OVERCONSTRAINED: GENERICALLY NO SOLUTION ⇒ SUSY
PROBLEMS w/ R SYMMETRY

1. SU(3) → U(N) R SYMMETRY
2. NONZERO GIMMICHRO MASS → R (WGA BREAKS R)
3. IF SSB R → MASSLESS GOLDSTONE

R SYMM EXPLICITLY BROKEN ... BUT THEN ARE SUCH VACUA!

QUALITY HATES CONTINUOUS DIM.
IF LIKES TO BREAK THEN EXPLICITLY
→ MASS TO GOLDSTONE, MAY NOT BE ENOUGH

AS SUCH VACUA IN A 'GENERIC' THEORY!

LEMONADE OUT OF LEMONS:

METASTABLE SUSY

1. GENERIC → CAN USE FRAMEWORK OF SQCD
2. EXPLICIT R, REMIND AS ACCIDENTAL SYMM IN LOW-E THY
3. SMALL PARAMETER ε WHICH PARAMETERIZES
 "EXPLICIT R BREAKING"
 "SEPARATION OF SUSY & SUSY VACUA IN FIELD SPACE"

BUT WE STILL HAVE POTENTIAL PROBLEMS W/ CALCULABILITY

SQCD IN ASYMPTOTICALLY FREE REGIME
→ IR CONFING ... ? LOW E DOF.

TRICK: USE SEIBERG DUALITY!

ELECTRIC THY

SU(N) w/ q, q̄

W = 0
ASYMPTOTICALLY FREE (F < 3N)
IR FREE FOC. (F > 3N)

SEIBERG

SU(N)
SU(F)
SU(F)

MAGNETIC THY

SU(N) w/ b, b̄, φ

Wm = φbφ̄

IR FREE (F < 3N)

SU(N)
SU(F)
SU(F)

ASYMPTOTIC FREE (F > 3N)
Selberg Duality:

\[\Lambda \quad \text{SAME IR Scet} \quad \Lambda \]

\[\text{Electric } \text{SU}(n) \quad \text{U(1)} \quad \text{UV} \quad \text{Thy} \]

\[\text{Magnetic } \text{SU}(n) \quad \text{IR} \quad \text{Thy} \]

So now we have a region where we can use tools to find metastable such vacua in a way where we have control of the UV & IR.

Strategy:

1. Write down IR model w/ tree-level softening
 - This will be our SU(n) magnetic theory, but not yet gauged.
2. Gauge the theory - Metastable vacuum
3. Show results are insensitive to UV theory details.
4. Write dynamical that

Naive Model I

\[W = \frac{1}{2} \text{Tr} \bar{\psi} i \gamma^\mu \partial_\mu \psi - \frac{1}{2} m^2 \text{Tr} \phi \]

\[k = \text{Qau.} \]

<table>
<thead>
<tr>
<th>SU(n)</th>
<th>SU(F)</th>
<th>SU(F)</th>
<th>U(1)A</th>
<th>U(1)</th>
<th>U(1)E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{g})</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\bar{g}^\prime)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(\bar{\phi})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\Delta W = -\frac{1}{2} m^2 \text{Tr} \phi \]

Breaking gauge \(\text{SU(n)} \rightarrow \text{SU}(\frac{n}{2}) \times \text{SU}(\frac{n}{2}) \times \text{U(1)}A \times \text{U(1)}E \)

This term is associated with mass of electric quarks in the UV theory. (Is related, p.41)
BY THE RANK CONDITION

This is just one of many ways to break SUSY at tree-level.

F-term breaking: if \(F \neq 0 \Rightarrow W \sim |F|^2 \neq 0 \Rightarrow \text{SUSY} \)

\[
-F_\phi = h \psi \phi^T + h |\phi|^2 \quad \text{(matrix eqn)}
\]

Rank \(n \) \quad Rank \(F > n \) \quad (~ 1 \text{fp})

Thus the 1st & 2nd terms cannot cancel completely.

\[
V \sim (F - n) |h| |\phi|^2 \quad \Rightarrow \text{SUSY}
\]

ISS: Consider vacuum that preserves maximum unbroken global symmetries: (up to flavor rot.)

\[
\Phi_0 = 0 \quad Y = \Phi^T = \begin{pmatrix} 1 & 1_{1 \times n} \end{pmatrix}
\]

(\text{near origin})

Calculation: Expand about this vacuum.

\[
V = |W_\Phi|^2 + |W_\Psi|^2 + |W_\phi|^2
= |\phi|^2 + |\Phi|^2 + |\Psi|^2
\]

\text{check for tachyons, runaways}

3 classical flat directions (pseudo-moduli)

Which are lifted by 1-loop Coleman-Weinberg potential

SPECTRUM

\[
\begin{array}{c}
\text{E} \\
\text{ee} \\
|hh| \quad \text{fields w/ tree-level masses} \\
|h\phi| \quad \text{fields w/ 1-loop masses} \\
0 \quad \text{massless Goldstones} + GSO \quad \text{Dirac} \\
\rightarrow \quad \text{no tachyonic directions; SUSY vacua are stable. (1-loop)}
\end{array}
\]

Aside: Komargodski-Sohn \(y_{\text{hm}} \)

\(\Rightarrow \) anomalously small gaugino mass

(\(y_{\text{hm}} \) relates gaugino mass to topology of base off pseudo-moduli space)
\(2\) MACRO MODEL II

Now we actually gauge \(SU(n)\)

\[F > 3n \quad \implies \quad F < \frac{3}{2}n \quad \text{(Magnetic) is free glue.} \]

- **First thing to check: effect of D-terms on scalar potential**
 \[V_0 = \frac{1}{2} g^2 \left(\text{Tr} \, Y^+ Y - \text{Tr} \, \tilde{Y}^+ \tilde{Y} \right)^2 \]

 But \(V_0 = 0 \) on vacuum of MACRO MODEL II.

 This previous vacuum remains a minimum of tree-level pot.

- **Superhiggs mechanism**
 - \(SU(n)\) gauge fields get mass \(g^2\)
 - Goldstone's eaten
 - Some pseudomoduli get mass \(g^2\)

- **Next calculate Coleman-Weinberg potential for pseudomoduli to check stability.**

But:

- Effect of \(SU(n)\) gauge fields drop out \(Q\) leading \(Q\)
 - D-terms vanish on vacuum manifold
 - Massive gauge fields do not couple to nonzero F-terms

NET EFFECT OF GAUDED \(SU(n)\): SUSY VACUA RESTORED!

\[W_{\text{quark}} = (\text{det} \, \frac{\partial}{\partial \phi})^{1 \over 2} \]

- \(Y, \tilde{Y}\) get mass \(\langle h^\pm \rangle\)
 - Integrate out (scale matching)
 - \(\Phi\) is pure \(SU(n)\)

Introduce dynamical scale \(\Lambda\)

\[\text{SUSY vac:} \quad \langle h^\pm \rangle = \Lambda \left(\frac{1}{\Lambda} \right)^{2n-1} \quad h_{\text{FxF}} = t \quad \left(\text{for } F > \frac{3}{2}n \right) \quad \Lambda_{\text{FxF}} \]

\[\epsilon = \frac{1}{\Lambda^2}, \quad \text{small parameter}, \quad \epsilon \ll 1 \]

\[|h^\pm| \ll |\langle h^\pm \rangle| \ll |\Lambda| \]

Well below Landau pole, low-E get justified

Stability = metastable vacua
DYNAMICAL SUSY RESTORATION

- $\Lambda \to \infty \text{ w/ } \mu \text{ fixed} : \text{ SUSY BREAKS SUSY (SUSY VAC \to \infty)}$
- $\Lambda \text{ large, finite} : \text{ SUSY VACUA COMES IN FROM } \infty$

EFFECTS FROM UV THEORY

EXPECT: DECOUPLING OF Λ-SCALE THY FROM $E \ll \Lambda$ EFT.

\[V_{\text{th}} \text{ (for UV EFT)} \sim |\mu|^2 \]

NOT IR ANALYTIC IN $|\mu|^2$ PARAM OF W.

WHY? MODES WE INTEGRATED OUT BECOME HARMLESS AS $|\mu|^2 \to 0$.

ON THE OTHER HAND, CONTRIBUTION FROM MICRO THY MUST GO AS

\[|\mu|^2 \left| \frac{\mu^2}{|\Lambda_m|^2} \right| = |\mu^2| \ll |\mu|^2 \]

THIS IS IR ANALYTIC ($|\mu|^2$ VS $|\mu|^2$) IN μ^2, DIFFERENTIABLE ≈ 0.

COMES FROM INTEGRATING OUT HEAVY MODES ($\sim \Lambda_m$).

CORRECTIONS $\sim |\mu^2| \to \text{ NEGLIGIBLE}$.

SHOW UP IN $8k$

0 NEUTRAL VAC IN SCD - ISS

LAST INGREDIENT: MAKE SUSY SUSY DYNAMICAL

ELECTRIC (UV) THEORY: $SU(N)$ SCD w/ Holomorphic Scale Λ, F QUARKS

$W = \text{Tr} MM$

$\mu \Lambda_m \approx \frac{\mu}{\Lambda}$

in degenerate (nondeg. discussed as deformation).

$M ; \ll |\mu|$

SEIBERG DUALITY: $SU(N) = SU(N) \text{ MAGNETIC} \Lambda \to \mu$ SCD Λ

F HAS QUARKS $c \vec{g}$ 1 F HIGGS M

$F \frac{N^2-1}{2N} \to \text{ IR FREE, SMOOTH K NEAR ORIGIN } \to K = \frac{1}{\Lambda} \text{Tr} \left(\hat{g} \hat{g} + \hat{g}^2 \right)$

$W_m = \frac{1}{\Lambda} \text{Tr} \hat{M} \hat{g} + \text{Tr} MM$

$\hat{g}^{\alpha + \beta + \gamma} \text{ is f.i. under-contravariant.}$

from scale matching of UV+IR theories.
This thing matches our warpo model II if

\[\begin{align*}
\psi, \tilde{\psi} &= \tilde{\psi}, \\
\bar{\psi} &= \bar{\psi}, \\
\lambda &= \lambda, \\
\tilde{\lambda} &= \tilde{\lambda}.
\end{align*} \]

\[\begin{align*}
\psi, \tilde{\psi} &= \tilde{\psi}, \\
\bar{\psi} &= \bar{\psi}, \\
\lambda &= \lambda, \\
\tilde{\lambda} &= \tilde{\lambda}.
\end{align*} \]

Conclusion: \(N/2 \leq F \leq \frac{3}{2} N \) with suitable tree masses has metastable SUSY ground state near origin.

- We established this in strongly coupled regime of UV theory.
- Vac param by 2 dillness' 15's 6, 6
- Result includes non-susy, non-chiral info.

Lifetime of metastable vacuum:

By using the "bounce action" of Coleman, \(S \sim \frac{1}{\epsilon \left((F-3N)/(F-N) \right)} \)

\[\begin{align*}
\langle \phi_{3N} \rangle &= 0, \\
\langle \phi_{3N} \rangle &= \frac{F}{N} \int_{(F-3N)/(F-N)} \Gamma F.
\end{align*} \]

SUSY & SUSY vacua are parametrically far apart

\(\epsilon \text{ param is } \epsilon \ll 1 \)

Closing remarks

- Can generalize to nondegenerate \(w \)
- Can generalize to diff range of \(F \)

Continuos

Hermetable vac has compact space of vacua (moduli space)

- Discrete space of susy vacua

\[\Rightarrow \text{ early universe may prefer to populate metastable vac} \]