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Abstract

This report is part of the author’s completion of the A-exam to become a Ph.D.
candidate. It reviews the basic formalism, Standard Model calculation and current
experimental status of D-D-mixing.



1 Introduction

The extraordinary success of the Standard Model in explaining all of the current particle
physics data has been both a curse and a blessing. It requires us to search for the effects
of new physics at either extremely high energies, or to look for tiny effects on low-energy
observables. The Tevatron (today) and the LHC (tomorrow?) are two accelerators that
operate on the energy frontier. Flavor factories like BaBar, Belle and CLEO on the other
hand explore the luminosity frontier — they gather colossal amounts of data on processes
which occur only at loop level in the Standard Model, hoping to reveal whatever small
quantum corrections the new physics could provide.

In this report, I will review the theory and current state of experimental searches for
D-D-mixing. The D system is special in that it is the only meson in the up-sector that
is thought to undergo oscillation, which suppresses the effect due to the relatively lighter
intermediate down-sector. The mixing effect is so minute that it has only been discovered
a few years ago, and high-precision data is still lacking. However, measurement of this tiny
effect has the potential to discover or constrain theories beyond the Standard Model, since
many of the BSM scenarios currently under investigation could have effects that would either
increase the mixing or the CP-violation far above the minute levels predicted by the SM.

This report is outlined as follows: In Section 2 I will review the basic quantum-mechanical
formalism of meson-mixing, with special focus on applications to D-mixing. Section 3 ex-
plores why the SM prediction of mixing is both tiny and difficult to calculate. In Section 4
I explain how to measure D-mixing experimentally, and outline some recent analysis by the
BaBar and CLEO collaborations. I conclude in Section 5, and Appendix A contains some
Linear Algebra results used in Section 2.

2 Meson-Mixing Formalism

I present the formalism for describing the oscillation and decay of a charged or neutral
pseudoscalar meson M , which would be D, K, B, or Bs. The material in this section is a
compilation of the reviews in [1] and [2].

2.1 Definition of Decay Amplitudes

We define decay amplitudes of the weak eigenstate M (which could be charged or neutral)
and its CP conjugate M to a multi-particle final state f and its CP conjugate f as

Af = 〈f |Hw|M〉 Af = 〈f |Hw|M〉
Af = 〈f |Hw|M〉 Af = 〈f |Hw|M〉

(2.1)

where Hw is the Hamiltonian governing weak interactions. For our purposes, this will be
made up of weak operators in the effective SM Lagrangian responsible for flavor-changing
neutral currents, along with an uncalculable (but measurable) QCD piece responsible for
hadronization and dispersive effects.
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To analyze the action of CP on the various states, it is useful to define spurious CP-phases:

CP

(
M
M

)
=

(
0 e−iξM

e+iξM 0

)(
M
M

)
(2.2)

(similarly for |f〉, |f〉), so that CP 2 = 1. If CP is conserved by the dynamics, then [CP,Hw] =
0 and Af , Af are the same up to an unphysical phase, which we are free to set to zero.

2.2 Neutral-Meson Mixing

Say we produce a state that is initially given as some superposition of M0 and M
0
:

|ψ(0)〉 = a(0)|M0〉+ b(0)|M0〉. (2.3)

This state will evolve in time, which includes oscillation between M and M as well as possible
decays into multiparticle final states f1, f2, . . . :

|ψ(t)〉 = a(t)|M0〉+ b(t)|M0〉+ c1(t)|f1〉+ c2(t)|f2〉+ . . . (2.4)

If we are primarily interested in oscillation, and are working with time scales � Λ−1
QCD, then

we can treat time evolution in a simplified formalism with an effective 2 × 2 Hamiltonian
matrix H = {hij} with the Schrödinger Equation:

i
∂

∂t

(
M

0

M0

)
= H ·

(
M

0

M0

)
. (2.5)

This effective hamiltonian will not be hermitian, since we are dealing with an incomplete

Hilbert space of only the M0,M
0

states, which are ”leaking” (i.e. decaying) into the final
states f1, . . .. It is therefor expected that we would have a non-hermitian component of H
which is responsible for the decay. We explicitly separate out the anti-hermitian component
by writing H in terms of hermitian matrices M,Γ as follows:

H = M− i

2
Γ. (2.6)

The value of this decomposition is best demonstrated by example.1 In D0 −D0
mixing, the

mass difference between the two mass eigenstates is tiny, and it is valid to write(
M− i

2
Γ

)
ij

=
1

2mD

〈Di|Heff |Dj〉 (2.7)

This will be an extremely useful equation later on, when we want to actually calculate H
from SM amplitudes. Let us further expand the LHS:

m
(0)
D δij +

〈Di|Hw|Dj〉
2mD

+
1

2mD

∑
f

〈Di|Hw|f〉〈f |Hw|Dj〉
m

(0)
D − Ef + iε

(2.8)

1We will be assuming that CPT is a good symmetry of the Lagrangian from now on (part of Lorentz-
invariance), which dictates h11 = h22.
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The first term is time evolution without oscillation. The second term describes flavor os-
cillation due to purely weak processes, i.e. box diagrams. The third term comes from real
intermediate states, e.g. oscillation via hadronic states. We can see that if the interme-
diate state is on-shell, the propagator becomes imaginary and contributes to Γ. Hence M
and Γ are associated with transitions involving off- and on-shell intermediate states respec-
tively. Furthermore, on- and off-diagonal elements of each correspond to flavor-preserving
and -changing processes.

2.3 Switch from Weak Basis to Mass Basis

The matrix H can be diagonalized by the matrix T defined in Appendix A. CPT sets z = 0
and simplifies the expressions considerably. Therefor we can define the light/heavy mass
eigenstates as follows:

|ML〉 = p|M0〉+ q|M0〉
|MH〉 = p|M0〉 − q|M0〉, (2.9)

where |q|2 + |p|2 = 1 and the eigenvalues are given by

ωL,H = h11 ∓
√
h12h21. (2.10)

The real and imaginary parts of ωL,H give the masses and decay widths of the eigenstates,
respectively. The mass and width splittings are

∆m ≡ mH −mL = Re (ωH − ωL)

∆Γ ≡ ΓH − ΓL = −2Im (ωH − ωL). (2.11)

Often they are discussed in terms of the x and y parameters:

x ≡ ∆m

Γ
y ≡ ∆Γ

2Γ
(2.12)

In the D-D system CP-violation is a very small effect, since it effectively only involves the
first two generations, and we can write

〈D|Heff |D〉
mD

= ∆m− i

2
∆Γ = Γ(x+ iy) (2.13)

This will be a formula we use a lot later.

2.4 Time-evolution of Mass Eigenstates

A bit of algebra yields expressions for the time-evolution of states that were initially pure

M0,M
0
:

|M0
phys(t)〉 = g+(t)|M0〉 − q

p
g−(t)|M0〉 (2.14)

|M0

phys(t)〉 = g+(t)|M0〉 − p

q
g−(t)|M0〉 (2.15)
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where

g±(t) =
1

2

(
e−imH t−

1
2

ΓH t ± e−imLt−
1
2

ΓLt
)
. (2.16)

We will often deal with decays where D0 → f occurs much more often than D0 → f . In
that case, we define the Right-Sign (RS) Amplitudes Af , Af and Wrong-Sign (WS) Ampli-

tudes Af , Af . Then we can express the time-dependent wrong-sign decay rate, normalized to
the right-sign amplitude, as

r(t) =
|〈f |D0

phys(t)〉|2

|Af |2
=

∣∣∣∣qp
∣∣∣∣2 ∣∣g+(t)λ−1

f + g−(t)
∣∣2

r(t) =
|〈f |D0

phys(t)〉|2

Af |2
=

∣∣∣∣pq
∣∣∣∣2 ∣∣g+(t)λf + g−(t)

∣∣2 (2.17)

where

λf ≡
q

p

Af
Af

and Γ =
ΓH + ΓL

2
(2.18)

2.5 Classification of Phases

Consider amplitudes Af for M → f its CP-conjugate Af for M → f . There are two types
of phases that can appear in those amplitudes:

• weak phases φ which appear in the Lagrangian directly. In the SM, these are only
present in the W-boson couplings. They are opposite for Af , Af .

• strong phases δ due to intermediate on-shell states in the decay process. They are
due to CP-conserving interactions (mostly QCD) and are the same for Af , Af .

Hence we might obtain an expression like

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (2.19)

Note that only weak phases cause CP-violation! Furthermore, only differences between
phases are physical and convention-independent.

Unless qualified otherwise, the use of the expression ”weak phase” refers to

φ = arg (q/p). (2.20)

If either |q/p| 6= 1 or φ 6= 0, this would signal CP violation. An alternative definition of the
weak phase is achieved by writing

M12 = |M12|eiφM Γ12 = |Γ12|eiφΓ (2.21)
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which yields (see Appendix A)

ωH − ωL = 2

[
|M12|2 −

1

4
|Γ12|2 − i|M12Γ12| cos(φM − φΓ)

]1/2

(2.22)∣∣∣∣qp
∣∣∣∣ =

[ |M12|2 + 1
4
|Γ12|2 + |M12Γ12| sin(φM − φΓ)

|M12|2 + 1
4
|Γ12|2 − |M12Γ12| sin(φM − φΓ)

]1/4

. (2.23)

and allows us to evaluate φ in terms of φM and φΓ.

Classification of CP-violating effects

We can classify two different kinds of CP-violation (CPV) based on our discussion of weak
phases:

1. Indirect CP-violation: can be accounted for by only having a single weak phase, no
strong phases.

2. Direct CP-violation: needs both weak and strong phases.

Direct CPV is generally harder to deal with, since the strong phases cannot be calculated
reliably in QCD. Instead, one must measure them separately.

A (complementary) classification scheme of CPV is based on where the CP-violation
occurs in expressions for decay rates, e.g. eq. (2.17):

1. CP-violation in Decay occurs when the meson and its CP-conjugate decay at dif-
ferent rates into the same (up to CP) final state. It is characterized by∣∣∣∣∣AfAf

∣∣∣∣∣ 6= 1. (2.24)

and is the only possible source of CPV in charged meson decays, where mixing is
absent:

Af± ≡
Γ(M− → f−)− Γ(M+ → f+)

Γ(M− → f− + Γ(M+ → f+)
=
|Af/Af |2 − 1

|Af/Af |2 + 1
(2.25)

This is direct CP-violation, and the presence of strong phases makes it difficult to
extract the weak CPV phases.

2. CP-violating in Mixingis characterized by∣∣∣∣qp
∣∣∣∣ 6= 1. (2.26)

and is the only source of CPV in semi-leptonic final states like M0 → l+X, M
0 → l−X,

where the wrong-sign decay amplitudes are zero. (This is the case in the SM and most
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of its sensible extensions, to an extremely high degree of accuracy.) In that case the

only source of WS decays is oscillation M0 → M
0 → l−X, and their asymmetry

determines |q/p|:

ASL =
Γ(M

0

phys(t)→ l+X)− Γ(M0
phys(t)→ l−X)

Γ(M
0

phys(t)→ l+X) + Γ(M0
phys(t)→ l−X)

=
1− |q/p|4

1 + |q/p|4
(2.27)

This is indirect CPV, but extracting the weak phases nevertheless requires knowledge
of certain hadronic quantities and can be difficult.

3. CP-violation in Interference of Decays with/without Mixing only occurs in

final states f common to both M0 and M
0
, and is characterized by

Imλf 6= 0. (2.28)

E.g. for final states of definite CP eigenvalue ηf = ±1, one can measure the asymmetry

AfCP
(t) =

Γ(M
0 → fCP)− Γ(M0 → fCP)

Γ(M
0 → fCP) + Γ(M0 → fCP)

. (2.29)

For B-mesons, we can make the approximation ∆Λ = 0, |q/p| = 1. This yields

AfCP
(t) = Sf sin(∆mt)− Cf cos(∆mt) (2.30)

Sf ≡
2Imλf

1 + |λf |2
, Cf ≡

1− |λf |2

1 + |λf |2
(2.31)

which contains no hadronic quantities!

In the D-system, the SM predicts negligible CPV since to a very good approximation it only
involves the first two quarks.

3 Calculation of D0 −D0
-mixing in the SM

In this section I will explain why we can not calculate D-D-mixing to any real precision in the
SM, and provide an order-of-magnitude estimate of its expected size. The main references
are [3–5].

3.1 The SM GIM Mechanism and the SU(3)-Limit

In the Standard Model, the only source of flavor-violation is the Yukawa couplings between
the fermions and the higgs. The Yukawas can be diagonalized with a biunitary transfor-
mation, which rotates the off-diagonal terms into the W -couplings, whereas the Z-couplings
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Figure 1: The W-mediated effective 4-fermion vertex changing uc→ didj

stay flavor-universal. This SM GIM Mechanism guarantees that there are no tree-level flavor-
changing neutral couplings. Hence, the ∆F = 2 processes of neutral meson-mixing will have
to be mediated by loop diagrams, and are accordingly suppressed.

In the quark mass-basis, all the flavor violation in the SM is packed into the unitary
CKM-matrix, which contains three angles and a single complex phase (after absorbing 5
unphysical phases into the quark wave functions).

−LW± =
g√
2
uLiγ

µ(VCKM)ijdLjW
+
µ + h.c. (3.1)

Its off-diagonal terms allows the W-boson to mediate flavor-changing charged current inter-
actions, see fig. 1.

Since experimental measurements seem to constrain θQCDto be effectively zero (strong
CP-problem), the single complex phase of the CKM matrix is also the only source of CP
violation in the SM. We know that cannot be the full story, since an additional source of
CPV is required to explain the matter-antimatter asymmetry of the universe. It is hoped
that precise measurements of meson-mixing processes could point towards new sources of
CP-violation.

Like all kinds of neutral meson oscillation, D0 − D
0
-mixing is mediated by two W-

exchanges, see fig. 2. The CKM matrix is extremely hierarchical:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ∼
 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (3.2)

where λ ∼ 0.2. This means that the diagram with intermediate bottom quarks is extremely
suppressed, despite the b’s larger mass — see eq. (3.5). Therefor, we can treat D-D-mixing
as a 2-generation process:

VCKM →
(

cos θc sin θc
− sin θc cos θc

)
(3.3)

This means that CP-violation is expected to be minimal, since we can always rotate away
the complex phase of a 2× 2-mixing matrix.
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Figure 2: General form of a D → D oscillation process (not shown: contributing diagram
with W ’s in ”s-channels”). The grey blob could be anything. If it’s nothing: box diagram.
If it’s lots of glue, we have hadronic intermediate states.

Figure 3: The SM box diagram mediating D-D mixing.

The light quarks u, d, s are much lighter than the heavy quarks c, b, t. For many applica-
tions it is a valid approximation to treat the three quarks as massless, meaning the strong
force has an additional SU(3) global symmetry that exchanges u, d, s. In this approximation,
D-D-mixing vanishes.

This is not hard to see. We can group all the intermediate states into sets of 4 which, by
SU(3)-symmetry, only differ by the CKM-matrix element appearing in the vertices in fig. 2.
For (i, j) = (1, 1), (1, 2), (2, 1), (2, 2) the diagrams in each set evaluate (up to a constant) to
cos2 θc sin2 θc,− cos2 θc sin2 θc,− cos2 θc sin2 θc, cos2 θc sin2 θc, i.e. they add up to zero.

To illustrate by example, let the grey blob in fig. 2 be ”nothing”. We get the SM box
diagram fig. 3, and adding up all 4 possibilities of internal quark lines gives exactly zero
in SU(3)-limit. Similarly, if we let the grey blob be a virtual up-quark-loop, along with a
bunch of glue, we can represent a 2-particle intermediate hadronic state in fig. 4, which also
gives zero net contribution. As long as the stuff inside the grey blob in fig. 2 only contains
u, d, s-quarks, it will all cancel, and contributions by states involving heavier quarks are very
small.

However, for the D-D-system, this global SU(3) symmetry is badly broken. This can
be easily determined by experimental measurement of the D → π+π−, π−K+, π+K−, K−K+

decay rates, which in the SU(3)-limit should occur with relative rates cos2 θc sin2 θc : sin4 θc :
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Figure 4: A 2-particle intermediate hadronic state in D-D-mixing (glue not shown).
(i, j) = (1, 1), (1, 2), (2, 1), (2, 2) corresponds to charged pseudoscalar intermediate state
π+π−, π−K+, π+K−, K−K+ respectively, and in the SU(3)-limit they all cancel to zero.

cos4 θc : cos2 θc sin2 θc. The real data shows O(1) deviations from that relation, and therefor
the cancelation is ineffective.

3.2 Estimating the size of short-distance and dispersive contribu-
tions to mixing

We will now estimate the contribution to ∆m = Γx in D-D mixing, by both short-range
(box diagram) and long-range (hadronic intermediate states) effects. This discussion will
closely follow [3]. As we will see, the short-range effects are completely drowned out by
non-perturbative dispersive contributions, making precise SM predictions for D-D mixing
difficult.

Short-Range Contributions: Box Diagram

Calculating the box diagram for D-D mixing is quite involved, because the external mo-
menta cannot be neglected like for the Kaon-System. This results in complicated integrals
over Feynman parameters. The resulting full expressions are rather cumbersome, but the
calculation has been performed in [4] with the perfectly sufficient mc � mu approximation.
The result is

L∆c=2 =
G2
F

8π2
ξsξd

(m2
s −m2

d)
2

m2
c

(O + 2O′) (3.4)

ξi = V ∗cdiVudi , O = uγµ(1 + γ5)c uγµ(1 + γ5)c, O′ = u(1− γ5)c u(1− γ5)c

The operator O is expected and shows up in the expression for the Kaon box diagram,
but O′ is a new contribution due to the non-negligible charm mass. Pulling a M2

w out of
one of the GF ’s, we see that the dimensionless factor (m2

s − m2
d)

2/M2
wm

2
c is smaller by a

factor of ∼ 5 × 104 than the corresponding m2
c/M

2
w factor in the Kaon box diagram. This

suppression has two sources: Firstly, the dominant intermediate state in Kaon mixing is the
charm quark, which is much heavier than the strange quark dominating D-mixing. Secondly,
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an additional suppression (m2
s −m2

d)/m
2
c ∼ 0.04 arises because momentum from the heavy

external charm-quark leg must be squeezed through the light s, d propagators.
As an aside, we note that the bottom quark contribution is dominated by the light

quarks (just like the top quark contribution is tiny for Kaon mixing). Its mass enhancement
is canceled out by the strong GIM suppression:

m2
b

m2
c

V ∗cbV
∗
csVubVus + V ∗cbV

∗
cdVubVud

V ∗cdV
∗
csVudVus

≈ 0.1 (3.5)

Of course, a ∼ 10% contribution could be significant if we were doing precision studies, but
it does not matter here.1

We can now estimate the mixing contribution of the box diagram. The expression for
∆m is

∆mbox
D =

〈D|H|D〉
mD

=
1

mD

G2
F

8π2
ξsξd

(m2
s −m2

d)
2

m2
c

(〈D|O|D〉+ 2〈D|O′|D〉). (3.6)

The hadronic matrix elements can be parameterized thusly:2

〈D|O|D〉 =
8

3
m2
Df

2
DBD (3.7)

〈D|O′|D〉 = −5

3

(
mD

mc

)2

m2
Df

2
DB

′
D (3.8)

The unknown parameters BD, B
′
D are O(1)-numbers, and in the vacuum approximation

(which is sufficient for an order-of-magnitude estimate) we can set them to 1. We obtain

∆mbox
D ∼ 10−18 GeV ×

(
fD

200 MeV

)2

(3.9)

Long-Range Contributions: Hadronic Intermediate States

Consider two-particle intermediate hadronic states, like in fig. 5. Working in chiral pertur-
bation theory, we can regard this diagram as a correction to the vacuum polarization of the
D-propagator

iM = A(g) log

(
−p2

Λ2
QCD

)
+ . . . (3.10)

1Note that we cannot apply this formula to estimate the top contribution to Kaon oscillation — since the
top is more massive than the W , we cannot expand for small fermion mass, and get a somewhat different
expression for its contribution.

2There are several different versions of this parametrization in the literature, and when the dust settles
there is overall agreement up to a factor of 2. This is practically irrelevant due to the negligible size of the
box contribution, so we don’t worry about it. . .
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Figure 5: D-D-oscillation by exchange of a Pion and a Kaon.

The divergent log is regulated by strong cutoff and A(g) is quadratic in the coupling constant
g. The ellipses denote various constant factors whose numerical value depends on the specific
vertex, but the logarithm is universal since its imaginary part

log(−p2) = log p2 + iπ (3.11)

must yield the decay rate into that intermediate channel. We can see this by applying the
optical theorem:

(where Γ is the decay rate into the intermediate channel). Applying this to our iM and
using eq. (3.10) yields mΓ = πA(g), and hence

Re (iM) =
mΓ

π
log

p2

ΛQCD

(3.12)

which yields

∆m = Re
〈D|H|D〉
mD

=
Γ

π
log

m2
D

Λ2
QCD

, (3.13)

where in the first step we assumed CPV to be a small effect and in the second we have
set p2 = m2

D (certainly fine approximations for an order-of-magnitude estimate in the D-D-
system).

Now we can estimate the ∆m contribution of, say, two-particle charged pseudoscalar
meson intermediate states. Note that the relative sign of the contributions is given by the
sign of the CKM factor, just like in the SU(3) approximation:

∆mdisp
D ∼ 1

π
log

m2
D

Λ2
QCD

[
Γ(D0 → K+K−) + Γ(D0 → π+π−)− Γ(D0 → K+π−)− Γ(D0 → K−π+)

]
(3.14)
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So we open PDG and look up those decay rates, and see that the K−π+ rate dominates
(Br = 3.8%, Γtot ≈ 1.6× 10−12 GeV). This yields

∆mdisp
D ∼ 5× 10−14 GeV� ∆mbox

D ∼ 10−18 GeV, (3.15)

so we see that the non-perturbative long-range effects are several orders of magnitude larger
than the calculable short-distance contributions, making the process impossible to calculate
with high precision.

3.3 Toy Problem: Calculating the box diagram in the mc � ms

Limit

Why are the hadronic contributions so much more important for D-mixing than for K- or
B-mixing? There are several reasons for this:

1. The box diagram for D-mixing is severely suppressed due to the heavy charm-quark
(compared to the intermediate quarks), yielding a double-suppression by the W -mass
as well as the c-mass.

2. Due to the heavy charm, more hadronic intermediate states open up. This is not a
huge effect, since the hadronic contributions are not necessarily a lot bigger in the D-
system than in the K- and B-system, but reducing the number of available hadronic
states would reduce the non-perturbative effect.

As a result, D-mixing is very difficult to calculate and, due to the very low values of the
mixing variables x, y � 1, very challenging to measure. Compare this to other mixing
systems:

• K-K: x, y ∼ 1. The constituent d, s-quarks are a lot lighter than the c-quark, which
dominantly contributes to the mixing, so that particular source of suppression is not
present. Nevertheless, the hadronic contribution is comparable to the short-range
contribution. [5].

• B-B: x ∼ 1, y � 1. The constituent d, b quarks are much lighter than the extremely
heavy top quark, which supplies the greatest contribution to the mixing despite the
small 13-elements of the CKM matrix.

What if we made the c-quark much lighter than the s-quark? In that case, the K-
intermediate states would not contribute much to the mixing, but much more importantly
the contribution of the box-diagram would increase dramatically. We calculate the box
diagram for this (unrealistic) limit.

The box diagram with all momenta indicated is shown in fig. 6. In the limit of mc,mu �
ms, we can ignore the external momenta and set them to zero. The corresponding matrix
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Figure 6: The box diagram amplitude we will calculate. Note that for each diagram, there
is another corresponding diagram where the W ’s are crossed.

element is then given by3

iM =
∑
di,dj

g4

4
V ∗cdiVudiV

∗
cdj
VudjI

ij × (3.16){
−(ucγ

µγαγνPLuu)(vcγνγαγµPLvu) + (ucγ
µγαγνPLuu)(vcγµγαγνPLvu)

+(vcγ
µγαγνPLuu)(ucγνγαγµPLvu)− (vcγ

µγαγνPLuu)(ucγµγαγνPLvu)
}

where I ij =
1

32π2

∫
dk

k5

(k2 −m2
di

)(k2 −m2
dj

)(k2 −m2
W )2

and PL = 1
2
(1− γ5).4

We will be working with 2 quark generations only, so our CKM matrix is given by eq.
(3.3) and consequently

V ∗cdiVudiV
∗
cdj
Vudj = sin2 θc cos2 θc

(
+1 −1
−1 +1

)
(3.17)

Working in the mc,mu � ms � mW limit, we get

Iuu + Iss − 2Ius =
1

32π2

m4
d −m4

s + 4mdms log
(
ms
md

)
2(m2

d −m2
s)m

4
W

 (3.18)

3In my calculations, the signs of the 1st and 2nd spinor term are (+,−) instead of (−, +) as shown.
However, this would cause the amplitude to cancel exactly! This is obviously not right, and I know the two
halves of the amplitude are equal and add. . . I consulted with Maxim Perelstein, and at the time of writing
he also didn’t know where the extra minus sign comes from. . . So at this point I am happy to admit defeat
and just put in that minus sign because I ”know it’s there somehow”.

4We are working in the Peskin&Schröder gamma basis, which might be different from what previous
results in this report used.
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It is easy to check that this expression → 0 as ms → md, i.e. it vanishes in the SU(3) limit.
In the case of physical interest, ms � md and

Iuu + Iss − 2Ius =
1

32π2

(
m2
s

2m4
W

+O

(
md

ms

)2
)
. (3.19)

Finally, we can simplify the spinor product using Fierz Identities:

(ucγ
µγαγνPLuu)(vcγνγαγµPLvu) = 4(ucγ

µPLuu)(vcγµPLvu)

(ucγ
µγαγνPLuu)(vcγµγαγνPLvu) = 16(ucγ

µPLuu)(vcγµPLvu)

(vcγ
µPLuu)(ucγµPLvu) = −(ucγ

µPLuu)(vcγµPLvu)

Putting everything together, we get the following simple result for the box-diagram am-
plitude:

iM =
3g4

32π2
sin2 θc cos2 θc

m2
s

m4
W

(ucγ
µPLuu)(vcγµPLvu) (3.20)

4 Experimental Measurements

We finally turn our attention to measuring D-D-mixing. The mixing parameters are deter-
mined by measuring the time-dependence of decay rates, see eq. (2.17), which is especially
challenging due to the tiny signal for D-D-oscillation predicted by the SM. However, it is this
very suppression that makes D-mixing an attractive discovery channel for new phenomena
(in particular new sources of CP-violation), since any oscillation significantly larger than the
SM-estimate or CPV >∼ 10−3 would signal physics beyond the Standard Model. Most of
the discussion in this section is derived from [2,6].

Basic Definitions: CF, SCS and DCS Decays

It is useful to classify decays based the amount of ”flavor violation” required for it to proceed:

• Cabibbo-Favored (CF) decays involve only diagonal elements of VCKM, and they
are not flavor-suppressed. One example is A(D0 → K−π+) ∝ VcsV

∗
ud.

• Singly-Cabibbo-Suppressed (SCS) decays involve one off-diagonal CKM-matrix
element, for example A(D → K+K−) ∝ VcsV

∗
us. They are therefor suppressed by 1 to

3 powers of λ ∼ 0.23.

• Doubly-Cabibbo-Suppressed (DCS) decays involve two off-diagonal CKM-matrix

elements, e.g. A(D
0 → K−π+) ∝ VusV

∗
cd. They are suppressed by 2 to 5 powers of λ.

Note: I found no formal definition of these terms, so the above is my own extrapolation based
on what I have seen in the literature. It seems a bit strange to me that no distinction is made
between 12-, 23- and 13-elements.
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4.1 Measuring Mixing using Wrong-Sign Semi-Leptonic Final States

Consider the final state f = K+l−ν. The Right-Sign amplitude A(D0 → K−l+ν) is CF,
whereas the Wrong-Sign amplitude A(D0 → K+l−ν) is practically nil in the SM. We can
therefor set Af = Af = 0 in our analysis. This means that the only way D0 can decay into

the WS state is via mixing D0 → D
0 → K+l−. It therefor seems natural to measure the WS

decay rate to determine the mixing parameters.
Our expression eq. (2.17) simplifies considerably for Af = Af = 0. In particular, all strong

phases disappear from the time-dependent WS decay rate since there are no interference
terms:

r(t) =

∣∣∣∣qp
∣∣∣∣2 |g−(t)|2 ≈ e−Γt

4

∣∣∣∣qp
∣∣∣∣2 (x2 + y2)(Γt)2 (4.1)

This means we should be able to extract the mixing parameters with great precision from
a time-dependent measurement of r(t) — the measurement is theoretically clean. At many
flavor factories like BaBar, a D0 is produced from the decay D∗+ → π+

s D
0, where the π+

s is
a ”slow” pion. Detection of the ”WS-pair” π+

s l
− is an unambiguous mixing signature.

As promising as that sounds, this channel has serious drawbacks.

1. It is impossible to determine x and y directly, only their sum in quadrature.

2. The presence of the undetected neutrino in the final state complicates the measurement.

3. The most serious disadvantage is the very fact that this measurement is so clean. Since
there are no other terms in the rate, it goes as ∝ (mix)2. But the mixing amplitude in
the D-system is so tiny that actually performing this measurement with good statistics
becomes very difficult. As a result, it is not the favored discovery channel for D-mixing.

We need some way of enhancing the tiny mixing signature. . .

4.2 Measuring Mixing using Wrong-Sign Kπ Final State

Consider the RS process D0 → K−π+. This is CF and has a large branching ratio, which
might lead one to suspect this would be a good way to measure the mixing. Not so. The
decay occurs too rapidly to discern the very slow oscillation, which has to be followed by a
slow DCS decay (with about tan θc ≈ 0.3% the rate of the CF decay):

Amplitude = D0 CF−→ K−π+ (large)

+

D0 mix−−→ D
0 DCS−−→ K−π+ (tiny)(tiny)

Speaking more quantitatively, we can expand the time-dependent decay rate (similar to eq.
(2.17), but this time for the RS process) for small x, y � 1 to obtain a simple polynomial
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time-dependence:

Γ(D0 → K−π+) = |AKπ|2e−Γt

(
1 +

∣∣∣∣qp
∣∣∣∣ rKπ [x sin(δKπ − φ) + y cos(δKπ − φ)] (Γt) + . . .

)
(4.2)

AKπ = A(D0 → K−π+)

−rKπe−iδKπ =
A(D

0 → K−π+)

A(D0 → K−π+)
=
A(D0 → K+π−)

A(D0 → K−π+)
=

WS

RS
(4.3)

(There is effectively no ”CPV in decay” for this process.) Note the presence of the strong
phase δKπ, which arises due to the interference of two amplitudes and has to be measured
separately (see below). We might think that the interference term, linear in t, is exactly
the enhancement of the mixing signal that we are looking for, since it multiplies the small
mixing contribution by a large CF-amplitude. However, even so the linear term already is
extremely small, suppressed by both the small mixing (x, y � 1) and the small DCS decay
amplitude (rKπ � 1).

Γ ∝ (CF)2 + 2(CF)(DCS)(mix) + (DCS)2(mix)2 (4.4)

The time-dependent term of the rate is so negligible compared to the constant that this
process can only be used to determine AKπ. So while we did get an enhancement of the
mixing signal, it was drowned out by an overwhelming time-constant background.

On the other hand, all contributions to the WS mode D0 → K+π− are roughly of the
same order, so no one term is drowned out:

Amplitude = D0 DCS−−→ K+π− (tiny)

+

D0 mix−−→ D
0 CF−→ K+π− (tiny)

Crucially, the DCS amplitude is still larger than the mixing one, meaning that the inter-
ference term (DCS)(mix) is larger than (mix)2 and hence easier to detect! That is what
makes this mode a preferred discovery channel for D-mixing, and it is to be compared to
the theoretically appealing but practically unfavorable wrong-sign semi-leptonic final state,
where we only had the tiny (mix)2 contribution.

The expression for the WS time-dependent decay rate eq. (2.17) is

Γ(D0 → K+π0) = |AKπ|2r2
Kπe

−Γt

[
1 +

∣∣∣∣qp
∣∣∣∣ y′Kπ cosφ− x′Kπ sinφ

rKπ
(Γt) +

∣∣∣∣qp
∣∣∣∣2 x′Kπ2 + y′Kπ

2

4r2
Kπ

(Γt)2

]
x′Kπ = x cos δKπ + y sin δKπ y′Kπ = y cos δKπ − x sin δKπ (4.5)

Careful time-dependent measurement of this process allows determination of
∣∣∣ qp ∣∣∣ , x′Kπ, y′Kπ

and, if it were large enough, φ. Keep in mind that true determination of x, y relies on
separate measurement of the strong phase δKπ.

16



Discovery of D-D-mixing at BaBar

D-mixing was discovered just recently, first by BaBar in March 2007 [7, 8], followed later in
the year by the BELLE and CDF collaborations [9–11]. The original BaBar analysis [7] used
time-dependent measurements of the WS decay D0 → K+π−, where the D0 was identified
by its production via D∗+ → π+

s D
0. They fitted the time-dependence to eq. (4.2), assuming

CP conservation,

Γ(D0 → K+π0)

e−Γt
∝ 1 +

∣∣∣∣qp
∣∣∣∣ y′KπrKπ

(Γt) +

∣∣∣∣qp
∣∣∣∣2 x′Kπ2 + y′Kπ

2

4r2
Kπ

(Γt)2, (4.6)

allowing the extraction of y′ from the linear term and x′ from the quadratic term. CP-
violation is expected to be extremely small, but they checked for its effect by fitting the

above function to D0 → K+π− and D
0 → K−π+ decays separately, and found no evidence

for φ 6= 0. Their results for the mixing parameters are

r2
Kπ = (3.03± 0.16± 0.10)× 10−3,

x′
2

= (−0.22± 0.30± 0.21)× 10−3,

y′
2

= (9.7± 4.4± 3.1)× 10−3,

where the errors are statistical and systematic, respectively. Note that they allowed for
unphysical negative values of x′2 in their fit. The systematic error in their y′ measurement
was significantly reduced in a subsequent analysis assuming CP-conversion [8],

y′ = (12.4± 3.9± 1.3)× 10−3,

constituting discovery of mixing at the 3σ level. Taking together all the current BaBar,
BELLE and CDF measurements excludes the no-mixing scenario at 9.8σ [6].

Measuring the Strong Phase at CLEO-c

CESR and CLEO-c have a unique feature enabling them to measure the δKπ strong phase.
They collide e+e− near the Ψ(3770)-resonance at

√
s = 3.77 GeV. The produced Ψ(3770) is

a CP = −1 eigenstates, and decays almost exclusively into D0D
0

in a CP-odd state. The
two D’s are quantum-mechanically entangled, and if one decays into a CP-eigenstate, we
immediately know the CP-eigenstate of the surviving D, at which point it’s ”clock starts
ticking” and we can get very precise measurements of decay rates for different CP-eigenstates
of D. (Note that this method implicitly assumes CP-conservation, which according to BaBar
etc. measurements is a justified approximation.) This is the D-system equivalent of the
Υ(4S)→ BB process at B-factories.

Let us illustrate this with an example. Define the two CP-eigenstates with CP-eigenvalues
η = ±1 to be

D0
± =

1√
2

(
D0 ±D0

)
(4.7)
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Figure 7: A Ψ(3770) decays at time t = 0 into a D−D-pair which is quantum-mechanically
entangled because the total CP-eigenvalue has to be−1. If at time t = t1 one of the daughters
decays into a CP-odd state like π0Ks, that immediately collapses the other D′s wave function
to the CP-even D0

+. At that point we start our clock and measure the decay-time ∆t between
the collapse of the D0

+ wave function until its decay.

Now consider the process shown in figure fig. 7. As soon as one of the D’s decays into, say,
a CP-odd state like π0Ks, the surviving D is immediately tagged as D0

+, at which point we
start our clock and measure its decay, in this example to the highly interesting WS state
K−π+. That way, we can measure A(D0

+ → K−π+) and A(D0
− → K−π+) separately, from

which we can construct the separate decay rates for D0 and D
0
, since

A(D0
± → K−π+) =

1√
2

[
A(D0 → K−π+)± A(D

0 → K−π+)
]

(4.8)

By comparing the different branching ratios for CP-eigenstates we can extract the strong
phase δKπ:

1± 2rKπ cos δKπ = 2
B(D0

± → K−π+)

B(D0 → K−π+)

=⇒ cos δKπ =
1

2rKπ

B(D0
+ → K−π+)−B(D0

− → K−π+)

B(D0
+ → K−π+) +B(D0

− → K−π+)
(4.9)

The measurement for this and other final states was performed at CLEO-c [12], with the
result

cos δKπ = 1.03+0.31
−0.17 ± 0.06. (4.10)
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Current State of Mixing Parameter Measurements

Putting everything together, the 2008 PDG [13] quotes the current best values for the D0-D
0

mixing parameters as

x =
(
9.72+2.71

−2.91

)
× 10−3

y =
(
7.8+1.8
−1.9

)
× 10−3∣∣∣∣qp

∣∣∣∣ = 0.86± 0.31

cos δK+π− = 1.03+0.32
−0.18

5 Conclusion

We reviewed the theory and current experimental status of D-D-mixing, and discussed its
special status as the only portal to potential CP-violation and FCNCs in the up-sector.
Current experimental results are still of low precision, but we can say that mixing has been
unequivocally discovered. It remains to be seen whether future results reveal significant
deviations from the Standard Model, or whether calculational advances (e.g. using lattice
QCD) allow us to improve the crude SM prediction and glean more information from the
data.
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A Linear Algebra Facts

Let

H =

(
h11 h12

h21 h22

)
(A.1)

be an arbitrary complex 2× 2 matrix. Also define

T =

(
q
√

1 + z p
√

1− z
−q
√

1− z p
√

1 + z

)
. (A.2)

Then

THT−1 =

(
ωL

ωH

)
(A.3)
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if

q

p
= −

√
h21

h12

(A.4)

z =
h22 − h11

ωH − ωL
(A.5)

ωL,H =
1

2

[
h11 + h22 ∓

√
(h11 − h22)2 + 4h12h21

]
(A.6)
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