
Anomaly Wars: Return of the Quanta

Joshua Berger

We give a review of anomalous B +L violation in the Standard Model. We discuss both thermal
and quantum processes that violate B + L. Such transitions are inherently non-perturbative: they
involve extended field configurations with non-trivial global topology. We give an overview the two
main tools we have for studying these transitions, sphalerons and instatons, and present results
obtained using these methods in both a simplified toy model and in an SU(2) gauge theory. We
will also discuss the implications of these results for the Standard Model.
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I. INTRODUCTION: SOMETIMES PT JUST DOENS’T CUT IT

The renormalizable SM has a U(1)B ×U(1)e×U(1)µ×U(1)τ symmetry classically. The U(1)B+L subgroup of this
symmetry is, however, anomalous and should be violated by quantum effects. In particular, there should be allowed
processes that violate B + L. These processes cannot arise at any level in perturbation theory, since a global change
in B + L number requires a field configuration with non-trivial topological charge. Any symmetry violating effects
must therefore arise due to non-perturbative effects.

One might suspect that such non-perturbative effects would be completely inaccessible computationally. The
trick to accessing the necessary non-perturbative computations is to expand about a field configuration that is not
the vacuum. The non-perturbative effects that violate B + L can be calculated as perturbative expansions about
such configurations. We have already discussed one such possible extended field configuation when we discussed
monopoles/solitons. Two different types of extended field configurations are relevant to the study of B +L violation:
instantons and sphalerons. Both of these extended field configurations have their conceptual pitfalls.

Instantons are used for calculating non-perturbative tunneling events between different vacua of the theory. Typ-
ically, interaction events are centered around a single event in spacetime. When discussing the local interactions of
perturbative field theory, the interactions occur exactly at single event. An instanton is an extended field configuration
that represents a “fuzzed-out” interaction event. The vacuum state in the distant past and distant future are different,
with the transition centered around a single spacetime point. We can then perturbatively expand about this instanton
configuation. We will see, however, that we can only make a semi-classical approximation using instantons. We only
pick out the lowest energy configuration contributing to the transition and then perturb about it. In determining
these configurations, we will find a deep connection to topology. We will discuss this point further in Section 3.

Sphalerons are less intuitive. As we will see, instantons are exponentially suppressed for perturbative gauge theories.

For the gauge theory of interest, SU(2)L, this exponential suppression is e−16π
2/g2 ∼ 10−173 at zero temperature,

which is negligible. For phenomenological purposes, B + L violation occurs more readily at finite temperature. We
will relate thermal fluctuations between different B +L states to unstable static solutions to the equations of motion
that interpolate between field configurations of different effective B + L charge. These unstable configurations are
called sphalerons.

The goal of this review talk is to give an overview of the formalism required to understand the non-perturbative
physics behind B+L violation. We begin by giving an overview of the vacuum structure of gauge thoery and discuss
the relation to topology. We attempt to avoid, whenever possible, rigorous math and take a minimalist approach
toward this. The vocabulary will be presented, but we make no formal definitions nor do we prove any results. We
continue by discussing the solutions of interest for B + L violation. We then address the questions of thermal and
quantum B + L violation in turn. In dealing with thermal fluctuations, we will first a very simple toy example. We
will then discuss a more realistic example and mention some subleties. The quantum transitions will be exponentially

suppressed by e−16π
2/g2 ∼ 10−173 and will be negligible. Time permitting, we will review this quantum calculation

as well. We will conclude by very briefly discussing some implications of these results.

II. ANOMALIES AND WINDING NUMBER: A LOVE STORY

The baryon-number violating instanton and sphaleron are both related to the structure of SU(2) solutions. Gener-
ically, in a model with an SU(2) symmetry, which may or may not be spontaneously broken, there exist topologically
stable solutions to the equations of motion. The important point to note at this time is that such solutions can
carry effective charge under anomalous global symmetries of the theory. The goal of this section is to understand the
connection between anomalous symmetries and topologically stable solutions to the classical equations of motion.

We begin by very briefly reviewing anomalies. For a more detailed review, see any good Quantum Field Theory
book. We focus on so-called chiral anomalies, which for our purposes means anomalies of U(1) global symmetries.
Consider a theory whose classical Lagrangian has a global U(1) symmetry with conserved current jµ. Suppose further
there are fermions ψi with charges Qi under the U(1). The symmetry is anomalous if ∂µj

µ 6= 0 at the quantum level.
This statement means that the symmetry is anomalous if there is ever a non-zero matrix element 〈f |∂µjµ|i〉 6= 0.
Assume now that the theory has an gauge symmetry G under which the ψi transform in representation ri. We can
then calculate the matrix element 〈p, ν, a; k, λ, b|∂µjµ|0〉, where a, b label adjoint gauge indices, µ, ν, λ are Lorentz
indices, and p, k are the momenta of the outgoing gauge bosons. This matrix element vanishes if the symmetry is not
anomalous. A careful calculation reveals that

〈p, ν, a; k, λ, b|∂µjµc|0〉 = − g2

16π2

∑
i

QiC(ri)〈p, ν, a; k, λ, b|FµνcF̃µνc|0〉, (1)
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where the generators ti are in the representation ri and F̃ is the dual field strength. If the sum of QiC(ri) is non-zero,
then the symmetry is anomalous. We have glossed over issues both glaring and subtle, such as understanding how
quantum mechanics can violate a symmetry in the first place. These issues are beyond the scope of this talk.

Consider the case of SM baryon and lepton number, with the gauge symmetry being SU(2)L. All the SU(2)L
singlets do not contribute to the possible anomaly. That leaves only QiαL for baryon and LiL for lepton number, where
i is the flavor index and α is the color index. For SU(2), C(2) = 1/2. For the quark doublets, Bi = 1/3. For the
lepton doublets, Li = 1. We then see that both U(1)B and U(1)L are seperately anomalous:

∂µj
µ
B = − g2

32π2
nFFF̃ , ∂µj

µ
L = − g2

32π2
nFFF̃ , (2)

where nF is the number of flavors. Notice that the current for B −L, jB−L = jB − jL is anomaly free. Furthermore,
the currents for the relative abundance of each lepton family Li−Lj is anomaly free. The current for jB+L, however,
has an anomaly:

∂µj
µ
B+L = − g2

16π2
nFFF̃ . (3)

Notice that his anomaly depends on the number of flavors nF that contribute in the triangle diagram loop. If we
consider all of the standard model fermions to be massless, this means that the amount of B + L violation is related
to the number of flavors of particles in the model. This makes sense, since the relative abundance of each family of
lepton number must be preserved: if we were to add an electron to the universe, we would also have to add a muon
and a tau. All the left handed fermion doublets in the standard model must be involved in the anomaly. We will see
this condition come up in some other ways later.

The quantity FF̃ appears in another context. Consider Yang-Mills with a simple gauge group G which we will take
to be SU(N) eventually. This theory has an action (with gauge indices suppressed):

S =

∫
d4x− 1

4
FµνFµν . (4)

Clearly, if the action is to be finite, Fµν must vanish as |x| → ∞. Equivalently, Aµ must approach a pure gauge
solution. But Aµ need not approach the same pure gauge solution in every spacetime direction away from the event.
Furthermore, the gauge at spacetime infinity can have non-trivial topology and can affect the structure of the solution
near the event. The set of all solutions that are pure gauge is the same as the set of all gauge transformations, which
is the set associated with the gauge group G. Thus we are looking for maps from the sphere at spacetime infinity S3 to
the gauge group G. The possible non-trivial topologies of such maps is determined by π3(G), the equivalence classes
of maps from S3 to G that can be continuously deformed into one another. It has been shown that π3(SU(N)) = Z.
There are solutions with any integer winding number as determined by their topological properties at spacetime
infinity.

The winding number ν of a given solution can be determined by calculating the Cartan-Maurer integral invariant.
It can be shown (maybe during one of the topology series of journal club talks) that the invariant is directly related

to the integral of FF̃ over all of spacetime. The relevant result is that∫
d4xF aµν F̃ aµν =

32π2

g2
ν. (5)

If we integrate (3), assuming that the current vanishes sufficiently fast at infinity, that there is a B+L charge difference
between the states in the distant past and future. The change in B+L is given by 2nF ν. We thus see the connection
between anomalies and winding number: the amount of violation of an anomalous symmetry when scattering off some
extended field configuration is proportional to the winding number of the field configuration. This sort of scattering
is exactly what we consider when we work with instantons.

We can go one step further at this stage. We can define a topological current (in Euclidean spacetime, if we are
being careful) associated with a field configuration that has non-trivial topology:

jµT =
g2

32π2
εµνρσ

(
AaνF

a
ρσ −

1

3
fabcAaνA

b
ρA

c
σ

)
. (6)

The divergence of this current can be shown to be proportional to FF̃ . Thus, a field configuration can effectively
carry charge under B + L so that the total current j = jB+L + jT is conserved. Thus, for a field configuration at a
specific time, we can associate an effective B + L charge

QB+L =

∫
d3xj0T . (7)



4

Thus, we see that even for the static configurations that we will consider when discussing thermodynamics, there is a
connection between topological charge and anomalies. The charge of the configuration need not be that of a particular
allowed vacuum. If it is not, however, then the solution cannot be stable. Unstable solutions that have B +L charge
interpolating between allowed vacua are called sphalerons.

We will discuss the connection between anomalies and winding number in more detail later after we introduce
both sphalerons and instantons in more detail. The goal here was to review the necessary anomaly technology and
to hint at the upcoming connections to topology. It should make sense that there is a connection between topology
and anomalies since the processes that mediate anomalous violation of symmetries must be non-perturbative and so
involve extended field configurations. We have made the relation a little more crisp and we will clarify further once
we have discussed the topological solutions we are interested in and why they are relevant.

III. BEYOND PT: EXTENDED FIELD CONFIGURATIONS OF SU(2)

Let us now focus on G = SU(2). Much of what we say will be extensible to other gauge groups. The concrete
solutions that we will write down will, however, be specific to this gauge group.

We are looking for solutions to the equations of motion that are pure gauge at infinity. A potential is pure gauge
if and only if it can be written in the form

Aµ = g−1∂µg, (8)

where g ∈ SU(2) is any local gauge transformation. We will stick to a notation where we write Aµ as an anti-Hermitian
2× 2 matrix. To recover the “usual” way of writing A, we can always take itr(Aµσa). We will thus look for solutions
of the form

Aµ = f(r2)g−1∂µg, (9)

where r will be the norm of either the space or spacetime coordinate depending on the context. We want to find f(r)
such that f(∞) = 1. In other words, the solution is pure gauge at infinity. We would also like to avoid singularities,
so we look for solutions with f(0) = 0.

To get a bit more concrete, we would first like to find the winding number ν = 1 instanton for a pure SU(2)
Yang-Mills theory. The point that makes SU(2) easy that it is topologically equivalent to S3. A point on S3 can
be described by a unit vector in R4 labeled by coordinates x̂ = (x1, x2, x3, x4)/r. The point x/r on the sphere is
indentified with the SU(2) gauge transformation

x4 + i~x · ~σ
r

. (10)

One can show that any element of SU(2) can be written in this form.
The simplest mapping from S3 to SU(2) is the trivial map:

g(0)(x) = 1. (11)

This mapping has trivial topology. The simplest map with non-trivial topology is the identity map

g(1)(x) =
x4 + i~x · ~σ

r
, (12)

where r =
√
x21 + x22 + x23 + x24. By calculating the Maurer-Cartan integral invariant, one can verify that this mapping

has winding number ν = 1. The higher winding number solutions are given by higher powers of g(1):

g(ν)(x) = [g(1)]ν . (13)

To find the instanton, we want a solution of the form (9), with g = g(1). For the solution to be called an instanton,
it must minimize the Euclidean action. When we discuss instantons, we will see that there are very good reasons for
this requirement. In particular, the Euclidean action should be finite so that we can do a valid perturbation theory
about this solution. To minimize the Euclidean action in the easiest way, we will need to do a little bit of math
trickery. First, let us define a notational convention called the Cartan inner product:

(F,G) = −2tr(FG), (14)
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where F and G are fields that transform in the adjoint (plus, possibly, some extra gauge term). Recall that we are
using a notation where such fields are represented by anti-Hermitian matrices. The Yang-Mills Euclidean action is
then

SE =
1

4g2

∫
d4x(F, F ) =

1

4g2

∫
d4x(F̃ , F̃ ), (15)

where we rescale F to pull out the gauge coupling in front. The integral can be bounded using the Schwartz inequality

SE =

[∫
d4x(F, F )

∫
d4x(F̃ , F̃ )

]1/2
≥ |
∫
d4x(F, F̃ )| = 32π2ν, (16)

where we use the relation (5) in the last step. The action is then bounded from below by SE ≥ 8π2/g2ν and the

bound is saturated when F = F̃ . We thus look for solutions with F = F̃ . This is a first order differential equation
for f , which yields the solution

f(r2) =
r2

r2 +R2
. (17)

We have thus constructed an instanton solution with ν = 1. The constant R is called the size of the instanton. This
instanton interpolates between vacua with ∆QB+L = 2nf .

When we add a Higgs doublet, the situation becomes more complicated. The instanton solution in this case can no
longer be determined analytically. We can say that the instanton solution for the gauge field still has the form (9).
There is, however, now a natural upper bound on the size of the instanton given by the weak scale (gv)−1. At larger
distances, electroweak symmetry is broken down to electromagnetism. Under electromagnetism alone, neither baryon
number nor lepton number is anomalous. This fact will be important later.

Finally, we would like to determine the sphaleron solution in the Higgsed theory. This solution is a static, unstable
solution. By unstable, we mean that it sits at a saddle point of the potential energy functional. It is, essentially, the
solution of minimum energy that sits at the peak of the potential barrier between vacua of different B + L. We will
not prove that this solution has these property. We will make an intuitive argument for why this makes sense. We
write down the solution in a gauge where A0 = Ar = 0. There is then a solution of the form

Ai = −2ivf(gvr)(g(1))−1∂ig
(1), H =

v√
2
h(gvr)g(1)

(
0
1

)
, (18)

with x0 set to 0. There is a solution of exactly the same form as the instanton solution, but “made static.” This is no
conincidence. What we have done is taken the static portion of the “largest” instanton solution at exactly the center
of the instanton.

The sphaleron has a few other properties that we will not show, but will mention. Its effective baryon charge, as
defined by (7) is QB+L = nf , half way between the initial and final B + L charges. It has a finite energy given by

E =

(
2MW

αW

)
E, 1.56 < E < 2.72, (19)

depending on the size of the Higgs quartic coupling λ. The radius of the sphaleron is of order (2MW )−1.

IV. SPHALERONS AND FINITE-TEMPERATURE FLUCTUATIONS

The goal of this section is to understand finite-temperature transitions between vacua with different B +L charge.
In doing so, we will make use of the sphaleron solution found in the previous section. In order to get there, we first
study a toy example that exhibits all of the qualitative features we would like to study without the computational
difficiulties.

Consider a pendulum in a potential symmetric about a minimum at θ = 0 as illustrated in Figure 1. There are
essentially two scales in this system: the frequency of expansions about θ = 0, ω0 ≡ V ′′(0), and the height of the
potential barrier from θ = 0 to θ = π, V0 ≡ V (π)− V (0). We will take V (0) = 0 for simplicity. Consider the system
to be at temperature T . There are three temperature regimes of interest.

The first is T � ω0. This is the zero-temperature, purely quantum limit. In this limit, we need to use instantons
to calculate transitions and we will discuss such transitions later. The second is ω0 � T � V0. In this regime,
many quanta are excited and the system is classical. The transitions between vacua, however, are expected to have
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FIG. 1. Potential energy of a pendulum in a symmetric potential.

a Boltzmann suppression e−βV0 . The third is T � V0. In this regime, transitions between vacua occur with order 1
probability. The scale that sets the rate is T , as that is the only relevant scale.

We would like to study our system in a little more detail quantatively. First, let us consider the limit ω0 � T � V0.
This limit will turn out to be extremely important. We would like to make our statement that transitions occur with
a rate suppressed by e−βV0 more crisp and come up with a general expression that we can extend to more complicated
system. The rate of transitions is given exactly by calculating the probability that the pendulum is found at θ = π
moving in the positive θ direction multiplied by the rate at which the pendulum in such a state crosses the barrier:

Γ = 〈δ(θ − π)pθ(p)〉

=

∫
dpdθ exp{−β

(
1
2p

2 + V (θ)
)
}δ(θ − π)pθ(p)∫

dpdθ exp{−β
(
1
2p

2 + V (θ)
) }. (20)

The integration of the numererator is trivial: the momentum integral is Gaussian and the angle integration is over a
delta function. In general, we cannot perform the integration in the denominator without making some approxima-
tions. In the limit we are considering, the particle will mostly be found near the bottom of the potential well, which
is at θ = 0. We can thus expand the potential to quadratic order about θ = 0, leading to a Gaussian integral. We
can further make the approximation of sending the angular integration limits to ±∞, so that the integration can be
performed analytically. The result is that

Γ ≈ ω0

2π
e−βV0 , (21)

where we recover the expected Boltzmann suppression and find the scale of the rate determined by ω0.
We would like to rewrite this expression in a way that can be generalized easily to field theory. The approach

is similar to that when dealing with tunneling out a false vacuum. In that case, the free energy acquires a small
imaginary part which is proportional to the rate of transitions. We will skip over this argument, as it is tenuous at
best, and simply proceed as follows. Consider the partition function Z expanded about the peak of the potential to
quadratic order. We will call this function Zsp. This quantity is not well defined, but we can analytically continue to
get an imaginary partition function. Let’s study the quantity

T
ImZsp

Z0
, (22)

where Z0 is the partition function expanded to quadratic order about the vacuum. Suppose that V ′′(π) = −ω−.
Performing the Gaussian integrations in the numerator and denominator, we find

T
ImZsp

Z0
=

ω0

2ω−β
e−βV0 , (23)

where we include a “conventional” factor of 1/2 due to the analytic continuation. Comparing (23) to (21), we find
the important relation

Γ ≈ ω−
π

ImZsp

Z0
. (24)

What we have learned is that, in the approximation where ω0 � T � V0, the rate can be related to Gaussian
expansions of the partition function about an unstable solution at the peak of the potential and about one of the true
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vacua. The unstable solution is, as we have already seen, called a sphaleron. In this case, the sphaleron solutions is
trivial: θ(t) = π.

Note that, in the high temperature limit, we can negelct the potential entirely in both the numerator and denomi-
nator of (20). The result of this approximation is that the rate is given by

Γ ≈
√

T

8π3
. (25)

That is, the rate is set entirely by the temperature (which in our units has dimensions of time to the power 1/2), up
to some numerical coefficients.

This formalism carries over almost wholesale to the study of the B + L anomaly. We have already see that there
is a sphaleron solution with E ∼ 2MW /αW . This energy corresponds to our V0. Furthermore, the excitations about
the minimum of the potential in the SU(2) direction are electroweak bosons, so that MW corresponds to our ω0. We
wind up immediately with the result that in the limit of 2MW � T � 2MW /αW , the rate is given by

Γ ∼ MW (T )

π
e−4βMW (T )/αW (T ). (26)

A more careful argument leads to more or less the same result.
The temperature dependence of this result is important for two reasons. The first is that the electroweak theory

has a critical point roughly in this range of temperatures. The second is that in making the approximations we’ve
made, we have made assumptions of weak coupling. The effective thermal coupling constant, however, can get large
at certain temperatures. Thus, we take a detour to discuss the temperature dependence of this physics.

We can calculate the renormalization of the Higgs VEV as we go from T = 0 to finite T . The renormalized Higgs
VEV is found to be

v2(T ) = v2(0)−
(

1

2
+

3g2

16λ

)
T 2, (27)

where g is the electroweak coupling and λ is the Higgs quartic coupling. The critical temperature is the one at which
v2(Tc) = 0. Solving, we find that

Tc = v(0)

(
2

1 + 3
8
g2

λ

)1/2

. (28)

The corresponding renormalization of the W mass can be written as

MW (T ) = MW (0)

[
1−

(
T

Tc

)2
]1/2

. (29)

These results mean that the critical temperature is ∼ 10MW , within the realm of our approximation.
Furthermore, we have made the approximation of ignoring the time-dependent modes in calculating Zsp: no dy-

namics ever entered our approximations. This is the approximation that gvβ � 1, which is only valid in the
low-temperature limit. In this limit, our Euclidean action gets replace with an effective 3-dimensional action, which
has a coupling constant

α3 =
gT

4πv
= αW

T

2MW
. (30)

As T → Tc, this coupling becomes large and our perturbative, time-independent approximation breaks down.
In making this estimate, we’ve glossed over a sublety that can be quite important. Generically, the sphaleron will

be symmetric under some subset of the symmetries of the theory. This leads to zero modes in excitations about
the sphaleron solution, as discussed during our monopoles camp. We cannot perform a Gaussian integration over
such modes and they must be treated seperately. We do not go over this calculation, but merely mention that it
gives an enhancement of g−13 for each zero mode and a factor of the cube of the size of the sphaleron R3 from
translations. In principle, these factors can be calculated using collective coordinates. They have a significant, but
coupling dependent effect. We will come back to such effects when we discuss instantons. It is also these effects that
guarantee that correlation functions of operators that do not have the proper B + L charge will vanish.

As the temperature increases, our system approaches the critical point of the electroweak phase transition, at which
MW (T ) → 0. Thus, we might expect that the rate vanishes as we go to this limit. In this limit, our approximation
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breaks down and a different approach is necessary. Well above Tc, transitions that pass through the sphaleron
configiguration are no longer favored. The sphaleron configuration is the lowest energy configuration over the barrier.
At high temperatures, however, the sphaleron size is large and smaller configurations begin to contribute. These
smaller configurations are favored by entropy as more states become available at higher temperatures. The typical
size of the contributing configurations is determined by requiring that the Boltzmann factor be order 1. Larger (lower
energy) configurations are disfavored by entropy, while smaller configurations (higher energy) are disfavored by energy
and are Boltzmann suppressed. We thus expect solutions of energy E ∼ T , which have size (αWT )−1 as the scale of
the solutions is suppressed compared to the scale of their energies. The rate of baryon number violating processes is
then no exponentially suppressed, but will still generally be suppressed by some powers of αW due to the contribution
of enhancement of the size of the solutions relative to T−1 to the translational symmetry factor, giving a rate

Γ ∼ αnWT. (31)

There is one more sublety of this whole subject that we would like to address at this point: the relation between
sphalerons and instantons. We have already mentioned that amplitudes for B + L violating processes are suppessed

by e−8π
2/g2 . Even at high temperatures, this would seem to make the rate for anomalous B+L violation vanishingly

small. There are many subleties when dealing with instantons (see “The Sphaleron Strikes Back” for further details),
but the most relevant one for our purposes is the fact that the finite temperature transitions do not occur in a vacuum,
but rather in a thermal bath of particles.

In particular, we find that while the amplitude for a process like 〈qqq`〉 is highly suppressed, there are unsuppressed
amplitudes for 〈qqq`Wn〉 for n ∼ π/αW . Such a process would require an extremely high energy to produce at zero
temperature due to phase space suppression. At sufficiently high temperature, there is a bath of W ’s available to
mediate the process.

To see how this works explicitly, we go through an extremely simple, but instructive toy example. Consider a
0-dimensional theory. That is, the path integral is over a single variable. We take the action to be

S(x) =
1

g2

[
1 +

(
x− 1

g

)2
]
. (32)

This action has a minimum at x0 = g−1, with the action given by Smin = g−2. We would like to analyse the 2n-point
“correlation function.” It is defined by the integral

In =

∫
dxe−S(x)x2n. (33)

The integration can be done analytically using Mathematica and the leading dependence in the small coupling regime
is

In ≈
√
πg1−2ne−1/g

2

. (34)

For small n, the exponential suppression dominates and the correlation function vanishes. For n ≈ g−2, we find that

In ∼ (g−2)g
−2

e−g
−2

≈ (g−2)!, (35)

using the Stirling approximation in the last step. Thus, the large n amplitude is by no means suppressed. It is, in
fact, very big.

We find that the naive instanton calculation becomes problematic when there are a large number of quanta. There
are further issues with the instanton estimate, including momentum dependence of the amplitude, the continuation
to real time, and the phase space integration. We learn that in the regime with many quanta, that is the high
temperature limit, we should not rely on instantons, but rather on thermal calculations using sphalerons. Hence, the
return of the quanta ensures the importance of sphalerons for thermal calculations!

V. QUANTUM TUNNELING AT ZERO TEMPERATURE

Quantum tunneling at zero temperature can be estimated in the semi-classical limit using instantons. There is a
sublety with this calculation that has, to the best of my knowledge, not been fully resolved. Recall that the instanton
was a solution to the equations of motion of the Euclidean action. We will assume throughout this section that
Euclidean correlation functions can be analytically continued to Minkowski space.
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When calculating the path integral, generally, we can break up the possible gauge field configurations based on their
winding number and the values of their parametrizations by the symmetries under which they transform nontrivially:

〈O〉 = N
∑
ν

∫
dλνDAν,λνOe−SE [Aν,λν ], (36)

where λν are the parameters that describe solutions with winding number ν and Aν,λν are all field configurations with
winding number ν with symmetry parameter λν . N is a normalization constant. Note that the integration over the
coordinates λν are superfluous. Excitations in these directions are zero modes and lead to a singular equation for the
Green’s function. Just as when we deal with gauge degrees of freedom, we have to use a Fadeev-Popov trick to get a
well-defined path integral and “fix” these degrees of freedom. This is the method of collective coordinates. We do not
discuss this procedure further, but it does have extremely important consequences for the calculation of amplitudes.
In particular, it gives a g−8 enhancement, among other factors.

We can then expand the action Aν,λν = Ainst,ν,λν + Ãν,λν . As we are expanding about the classical instanton
solution, we get an expression like

S = Sinst +

∫
d4xd4y

δ2S

δA(x)δA(y)
|A=AinstÃ(x)Ã(y) + . . . , (37)

where we write A = Ainst + Ã. The linear term vanishes since Ainst is a solution to the classical equations of motion.
Notice that Sinst = 8π2ν/g2 by (5). Thus, an amplitude involving a winding number 1 instanton will be automatically

be suppressed by e−8π
2/g2 as mentioned earlier.

We should also perform the expansion with respect to other fields in the theory. In particular, we should expand
with respect to the fermions of the theory:

S ⊃
∫
d4xd4y

δ2S

δfi(x)δfj(x)
|A=Ainstfi(x)fj(x) (38)

If O does not contain the fields fi and fj , then the path integral will yield a factor of

det
δ2S

δfi(x)δfj(x)
|A=Ainst

. (39)

If there are any zero modes, then the path integral vanishes. In fact, there will be zero modes for all the fermions
involved in the anomaly loop. This is just telling us that instantons mediate B+L violation according to the anomaly
(3). There cannot be vacuum-to-vacuum transitions as this violates the combined topological and B+L charge. Thus,
the operator must include all of the field involved in the anomaly loop. We have now seen this fact in two different
ways.

The correlation function for B + L violation with Nf flavors was performed in the case with out a Higgs and with
massless fermions by ’t Hooft. There are three generations of quarks with three colors each and three generations
of leptons. The effecive operator must include all of these fields, as we have now argued in two different ways. The
result is that

L =
232π18

48
g−8e

− 8π2

g2 eA−6B
µ10/3

(gv)43/3
detfifj , (40)

where the determinant runs over the possible SU(2) doublet chiral fermions fi = {`I , qaI }, µ is the scale of the
interaction, gv is used as in IR cutoff in the integration over instanton sizes, and A and B are numerical constants
that are order 1. We write this full expression for the effective operator of B+L violation to highlight several points.
We point out that the scale associated with the interactions is the associated with some IR cutoff, which is of order
the sphaleron size gv in this case. This cutoff makes sense as the sphaleron is the lowest energy excitation that crosses
the potential barrier between different B + L vacua. We also highlight the extreme suppression of the dimensionless
coupling that comes with the operator. Numerically, for µ ∼ 1 Tev, the scale associate with this operator is ∼ 103 TeV,
so it is highly suppressed.

VI. CONSEQUENCES AND CONCLUSIONS

In this review, we have focused on computational aspects of B + L violating processes. We have neglected, up to
this point, several other important aspects of these processes.
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We have not discussed in great detail the topology necessary to understand the topological solutions involved in
B+L violation. It would be interesting to study on more general grounds the topological consequences of instantons.
We leave this for other talks in the Journal Club.

We have not explicitly calculated explicitly any rates or amplitudes for B+L violation using sphalerons or instantons.
These calculations are technically demanding. They require a full understanding of collective coordinates as well as
a very careful approach to regularization of divergent integrals. It would be interesting to understand the subleties
involved in these calculations, if not the whole procedure followed.

Lastly, we have neglected up until this point the consequences of the results derived for the phenomenology SM.
We were motivated to study sphalerons by their importance in cosmological bayron and lepton number violation. In
particular, they are essential for calculating the residual baryon and lepton asymmetry in the present day universe. If
some high-scale physics generates a bayon or lepton number asymmetry, then sphalerons can transfer the asymmetry
between the two sectors. As we can now understand, these processes freeze out below T ∼ 2MW , leaving a baryon and
lepton asymmetry at their equilibrium values at that temperature. Calculating these residual asymmetries involves
the interplay of the chemical potentials for the various particles of the SM, as described in my talk on Asymmetric
Dark Matter. This is perhaps the most important legacy of anomalous B+L violation for present day phenomenology.

Through this review, we have studied the connection between topics that seemed disconnected a priori: anomalies,
non-perturbative physics, and topology. We have seen just what extendended field configurations do concretely to
modify our approach to field theory calculations. Hopefully, we have come out of this with a deeper understand-
ing of field theory and its intricacies. Even though the proesses that we have seen have a fairly limited range of
phenomenological importance, we believe that they are conceptually essential to our picture of field theory.

I would like to thank the Csaba Csáki, Maxim Perelstein, and all of the LEPP theory graduate students at Cornell
for helpful discussions during the writing of these notes.


