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Abstract

This is an extra note detailing the derivations for our paper, Warped Penguins (arXiv:1001.late).
It is an ‘official’ set of calculations starting from a pedagogical background. Please note
that the main paper has the primary results and that this is meant to be supplementary
material that is not meant to replace our arXiv paper.
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1 What you already know

The reader is assumed to already be familiar with the Randall-Sundrum model and have some
facility with working with bulk fields. A good summary can be found in the TASI lecture notes
by Csáki et al. [1, 2]

2 Vielbeins, Spin Connections, and Antisymmetrization

How does one write down the fermionic action for a curved spacetime, such as the Randall-
Sundrum scenario? In the semiclassical limit where gravity is treated as a classical background
for quantum fields, the effects of the curvature of space on the action are:

1. Covariant element. The measure is promoted to a covariant volume element,

ddx → ddx
√

|g|,

where g is the determinant of the metric.

2. Metric. The contraction of Lorentz indices must be accounted for with explicit factors of
the nontrivial metric.

3. Covariant derivatives. The derivative operators must be promoted to the appropriate
covariant derivatives. In particular, the covariant derivative acting on fermions is the spin
covariant derivative.

4. Vielbeins. The γ matrices which act on spinor indices are define on the tangent space.
Vielbeins must be inserted to convert spacetime indices to tangent space indices.

The first two are rather well known and should be familiar for those who have worked with
scalar fields on curved backgrounds. Those requiring further background are encouraged to review
their favorite general relativity book. The remaining two items are not necessarily covered in a
typical general relativity or field theory course and are worth discussing a bit further.

2.1 Vielbeins

The γ matrices which obey the Clifford algebra are only defined for flat spaces. Another way to
say this is that they live on the tangent space of our spacetime. In order to define curved-space
generalizations of objects like the Dirac operator iγµ∂µ, we need a way to go from spacetime
indices M to tangent space indices a. Vielbeins are geometric objects which do precisely this:
ea

µ(x). The completeness relations associated with vielbeins allow them to be interpreted as a sort
of “square root” of the metric in the sense that

gMN(x) = ea
M(x)eb

M(x)ηab, (2.1)

1



where ηab is the flat (e.g. Minkowski) metric on the tangent space. For our particular purposes
we will need the inverse vielbein, EM

a (x), defined such that

EM
a (x)ea

N(x) = δM
N (2.2)

EM
a (x)eb

N(x) = δ b
a . (2.3)

The capital ‘E’ for the inverse vielbein is just a silly notation picked up from somewhere that
helps visually distinguish ea

µ from its inverse. Spacetime indices are raised and lowered using the
spacetime metric gMN(x) while tangent space indices are raised and lowered using the flat metric
ηab(x).

A more physically motivated way of thinking about the vielbein is in terms of Einstein’s
equivalence principle, which states that at any point one can always set up a coordinate system
such that the metric is flat (Minkowski) at that point. Thus for each point x in space there exists a
family of coordinate systems that are flat at x. For each point we may choose one such coordinate
system, which we call a frame. By general covariance one may define a map that transforms to
this flat coordinate system at each point. This is the vielbein. One can see that it is a kind of
local gauge transformation, and indeed this is the basis for treating gravity as a gauge theory built
upon diffeomorphism invariance. In slightly more mathematical, the vielbein represents the frame
bundle on the spacetime.

2.2 Spin covariant derivative

Moving on we come to the spin covariant derivative. By now we are familiar that the covariant
derivative is composed of a partial derivative term plus connection terms which depend on the
particular object being differentiated. For example, the covariant derivative on a spacetime vector
V µ is

DMV N = ∂MV N + ΓN
MLV L. (2.4)

Now that we are armed with a vielbein, however, the object V didn’t necessarily need to have
a spacetime vector index, µ. We could convert it into an object with a tangent space index, a.
(And using gamma/Pauli matrices we can convert this into spinor indices.) We would then like
to define a covariant derivative acting on the tangent space vector V a,

DMV a = ∂MV a + ωa
MbV

b, (2.5)

where the quantity ωa
Mb is called the spin covariant derivative. Consistency of the two equations

implies

DMV a = ea
NDMV N . (2.6)

This is sufficient to determine the spin connection. We won’t prove the result here, but one can
look up the appropriate references (e.g. your favorite general relativity of differential geometry
books). The result is [3]

ωab
M =

1

2
gRP e

[a
R∂[Me

b]
P ] +

1

4
gRP gTSe

[a
Re

b]
T ∂[Sec

P ]e
d
Mηcd (2.7)

=
1

2
eNa

(
∂Meb

N − ∂Neb
M

)
− 1

2
eNb (∂Mea

N − ∂Nea
M) − 1

2
ePaeRb (∂P eRc − ∂ReRc) ec

M . (2.8)
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When acting on spinors one needs the appropriate structure to convert the a, b tangent space
indices into spinor indices. This is provided by

σab =
1

4
[γa, γb] (2.9)

so that the appropriate spin covariant derivative is

DM = ∂M +
1

2
ωab

Mσab. (2.10)

2.3 Antisymmetrization and Hermiticity

Finally, the fermionic action takes the form

S =

∫

ddx
√

|g| Ψ
(

iEM
a γa←→DM − m

)

Ψ, (2.11)

where the antisymmetrized covariant derivative is defined by

←→
DM =

1

2
DM − 1

2

←−−
DM . (2.12)

This last point is somewhat subtle. The canonical form of the fermionic action must be antisym-
metric in this derivative in order for the operator to be Hermitian (and thus for the action to be
real). In flat space we are free to integrate by parts in order to get an only right-acting Dirac
operator. This is a very nice thing to say and ‘makes sense,’ but the actual meaning is a little bit
subtle.

Hermiticity is defined with respect to an inner product. The inner product in this case is given
by

〈Ψ1|OΨ2〉 =

∫

d5x
√

|g| Ψ1OΨ2. (2.13)

A manifestly Hermitian operator is given by OH = 1
2

(
O + O†

)
, where we recall that

〈Ψ1|O†Ψ2〉 = 〈OΨ1|Ψ2〉 (2.14)

=

∫

d5x
√

|g| OΨ1Ψ2. (2.15)

The definition of an inner product on the phase space of a quantum field theory is a nontrivial
matter in the study of QFT on curved spacetimes. Since our spacetime is not warped in the time
direction there is no ambiguity in picking a canonical Cauchy surface to quantize our fields and
we may follow the usual procedure of Minkowski space quantization with the usual Minkowski
spinor inner product.

As a sanity-check, consider the case of the partial derivative operator ∂µ on flat space time.

The Hermitian conjugate of the operator is the left-acting derivative,
←−
∂µ, by which we really mean

∫

ddx Ψ1∂
†Ψ2 = 〈Ψ1|∂†

µΨ2〉 = 〈∂µΨ1|Ψ2〉 =

∫

ddx ∂µΨ1Ψ2 =

∫

ddx Ψ1

←−
∂µΨ2 =

∫

ddx Ψ1 (−∂µ) Ψ2.
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In the last step we’ve integrated by parts and dropped the boundary term. We see that the
Hermitian conjugate of the partial derivative is negative itself. Thus the partial derivative is not
a Hermitian operator. This is why the momentum operator is given by P̂µ = i∂µ, since the above

analysis then yields P̂ †
µ = P̂µ (again dropping the boundary term and noting that the i flips sign

under the bar).
Now we can explicitly write out what we mean by the left-acting derivative in eq. (2.11). The

operator iEM
a γaDM is not Hermitian and needs to be made Hermitian by writing it in the form

OH = 1
2

(
O + O†

)
. Thus we may write a manifestly Hermitian Dirac operator as,

Ψ (Dirac) Ψ = Ψ

[
1

2

(
iEM

a γaDM

)
+

1

2

(
iEM

a γaDM

)†
]

Ψ (2.16)

= Ψ
i

2
EM

a γaDMΨ +
i

2
EM

a γaDMΨΨ (2.17)

= Ψ
i

2
EM

a γaDMΨ − i

2
EM

a γaDMΨΨ, (2.18)

where we’ve used the fact that EM
a is a real function with no spinor indices. The second term on

the right-hand side can be massaged further,

γaDMΨΨ = Ψ†←−−DM
†γa†γ0Ψ (2.19)

= Ψ†←−−DM
†
(
γ0γaγ0

)
γ0Ψ (2.20)

= Ψ†(
←−
∂M + ωbc

Mσbc†)γ0γaΨ (2.21)

= Ψ
←−−
DMγaΨ (2.22)

= Ψγa←−−DMΨ. (2.23)

Note that we have used that γM† = γ0γMγ0 and, in the last line, that [σbc, γa] = 0. Finally,
putting this all together, we can write down our manifestly real fermion action (i.e. manifestly
Hermitian Dirac operator) as in eq. (2.11),

S =

∫

ddx
√

|g| Ψ
(

iEM
a γa←→DM + m

)

Ψ (2.24)

=

∫

ddx
√

|g|
(

i

2
ΨEM

a γaDMΨ − i

2
DMΨEM

a γaΨ − mΨΨ

)

. (2.25)

All of this may seem a little pedantic since integration by parts allows one to go back and
forth between the ‘canonical’ form and the ‘right-acting only’ form of the fermion kinetic operator
(Dirac operator). Our interest, however, is to apply this to the Randall-Sundrum background
where integration by parts will generally introduce boundary terms and so it is crucial to take the
canonical form of the Dirac operator as the starting point.

2.4 Further Reading

We’ve been necessarily terse here, listing only the immediately relevant results. The material
touched upon, however, goes much deeper and play key roles in the elegant differential geometric
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structure of physics. The curious reader is encouraged to pursue these topics further by looking
at the appropriate differential geometry and general relativity references.

Vielbeins (lit. “many legs”) are often referred to as ‘vierbeins’ (“four legs”) or ‘tetrads’ in
general relativity books (pick up your favorite and see1). They are often mentioned in associated
with the Cartan formalism of gravity or as frame fields (or frame bundles for the mathematically
inclined). They also appear in quantum field theory as key ingredients to promoting local su-
persymmetry to supergravity [4, 5, 6]. The spin connection requires a little more mathematical
investment to appreciate, but an excellent and accessible introduction can be found in chapter 12
of Green, Schwarz, Witten, volume 2 [7]. Finally, the fermionic action on a curved spacetime is
presented in Bertlmann’s textbook [8].

An important caveat should be made here: it is the opinion of the author that Bertlmann
makes some misguided statements in this section of his book. While the statements in his book
are all correct for manifolds without boundaries, they are presented somewhat backwards and
are misleading for manifolds with boundaries (e.g. the RS orbifold). He starts with the right-
acting action and shows that integration by parts allows one to convert the right-acting action
into the canonical antisymmetrized action. As noted above this is not true for spacetimes with
boundaries. It’s somewhat ironic that the original Grossman-Neubert paper on bulk RS fermions
[9] cites Bertlmann when writing the action. The analysis is still correct, however, since the chiral
boundary conditions imposed on the fermions end up cancelling the incorrect boundary terms
that appear when Bertlmann’s method is applied to the RS spacetime2.

An excellent book for a broader picture of the application of differential geometry to physics,
Göckeler and Schucker provides fantastic breadth and depth in a compact volume written in a
way that will appeal to particle theorists.

Finally, a nice reference touching on many of these topics as applied to 5D spaces in quantum
field theory is Sundrum’s TASI lectures [10] and pedagogical write-up [3].

3 The Randall-Sundrum Bulk Fermion Action

We now specialize to the case of the Randall-Sundrum background,

ds2 = (R/z)2 (
ηµνdxµdxν + dz2

)
. (3.1)

We use the ‘modern’ notation where the metric is conformally flat. This is the natural choice for
invoking the AdS/CFT correspondence [11], though the generation of hierarchies is not as clear
as the original choice of coordinates with an exponential warp factor3.

One can convert back and forth between these notations using

z = Reky k = 1/R. (3.2)

1If you don’t find it, then you’re reading an undergraduate textbook.
2It may be useful to recall that the metric is covariantly constant.
3In these conformal coordinates the generation of exponential hierarchies is based on a radius stabilization

mechanism, e.g. Goldberger-Wise.
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3.1 The spin connection

In these coordinates we may write the vielbein and inverse vielbein as

ea
M(z) =

R

z
δa
M EM

a (z) =
z

R
δM
a . (3.3)

We may write out the spin connection term of the covariant derivative as

ωab
M =

1

2
gRP e

[a
R∂[Me

b]
P ]

︸ ︷︷ ︸

ωab
M (1)

+
1

4
gRP gTSe

[a
Re

b]
T ∂[Sea

P ]e
d
Mηcd

︸ ︷︷ ︸

ωab
M (2)

. (3.4)

This can be simplified using the fact that the vielbein only depends on z. The first part is

ωab
M(1) =

1

2
gRP ea

R∂[Meb
P ] −

1

2
gRP eb

R∂[Mea
P ] (3.5)

=
1

2
gRP ea

R∂Meb
P − 1

2
gRP ea

R∂P eb
M − 1

2
gRP eb

R∂Mea
P +

1

2
gRP eb

R∂P ea
M (3.6)

= − 1

2z
gRP ea

Reb
P δ5

M +
1

2z
gRP ea

Reb
Mδ5

P +
1

2z
gRP eb

Rea
P δ5

M − 1

2z
gRP eb

Rea
Mδ5

P (3.7)

= − 1

2z
ηabδ5

M +
1

2z
gR5ea

Reb
M +

1

2z
ηbaδ5

M − 1

2z
gR5eb

Rea
M (3.8)

= − 1

2z
ηab(δ5

M − δ5
M) +

1

2z
gR5

(
ea

Reb
M − eb

Rea
M

)
(3.9)

= − 1

2z
δR
5

(
δa
Rδb

M − δb
Rδa

M

)
(3.10)

=
1

2z
δ
[a
Mδ

b]
5 , (3.11)

where we’ve used ∂Meb
P = −1

z
eb

P δ5
M and the completeness relation gMNea

Meb
M = ηab. The second

part is given by

ωab
M(2) =

1

4
gRP gTSea

Reb
T ∂[Sec

P ]e
d
Mηcd −

1

4
gRP gTSeb

Rea
T ∂[Sec

P ]e
d
Mηcd (3.12)

=
1

4
gRP gTSea

Reb
T ∂Sec

P ed
Mηcd −

1

4
gRP gTSeb

Rea
T ∂Sec

P ed
Mηcd

− 1

4
gRP gTSea

Reb
T ∂P ec

Sed
Mηcd +

1

4
gRP gTSeb

Rea
T ∂P ec

Sed
Mηcd (3.13)

= − 1

4z
gRP gTSea

Reb
T δ5

Sec
P ed

Mηcd +
1

4z
gRP gTSeb

Rea
T δ5

Sec
P ed

Mηcd

+
1

4z
gRP gTSea

Reb
T δ5

P ec
Sed

Mηcd −
1

4z
gRP gTSeb

Rea
T δ5

P ec
Sed

Mηcd (3.14)

=
1

4z

(
−ηacgT5eb

T ed
Mηcd + ηbcgT5ea

T ed
Mηcd + gR5ηbcea

Red
Mηcd − gR5ηaceb

Red
Mηcd

)
(3.15)

=
1

4z

(
δT
5 δb

T δd
Mδa

d − δT
5 δa

T ed
Mδb

d − δR
5 δa

Rδd
Mδb

d + δR
5 δb

Rδd
Mδa

d

)
(3.16)

=
1

2z

(
δb
5δ

a
M − δa

5δ
b
M − δa

5δ
b
M + δb

5δ
a
M

)
(3.17)

=
1

2z
δ
[a
Mδ

b]
5 . (3.18)
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Note that these vanish identically for M = 5. We can now write out the spin-connection part
of the covariant derivative,

1

2
ωab

Mσab =
1

2

(
1

z
δ
[a
Mδ

b]
5

)

M 6=5

1

4
[γa, γb] (3.19)

=
1

4z

(
γMγ5 + δ5

M

)
, (3.20)

where we’ve inserted a factor of δ5
M to cancel the (γ5)

2 when M = 5. (Note that the natural
convention is that (γ5)2 = −1 since this is what satisfies the 5D Clifford algebra.)

Finally, the spin connection part of the covariant derivative is

1

2
ωab

Mσab =
1

4z

(
γMγ5 + δ5

M

)
(3.21)

so that the spin covariant derivative is

DM =

{

∂µ + 1
4z

γµγ5 if M = µ

∂5 if M = 5.
(3.22)

Now after all that pencil-pushing, we can say something rather anticlimactic: the spin connec-
tion drops out of the action.

S =

∫

d5x

(
R

z

)4
i

2
ΨδM

a γaDMΨ − i

2
δM
a DMγaΨΨ (3.23)

=

∫

d5x
i

2

(
R

z

)4 (

ΨγM←→
∂MΨ +

1

4z
Ψγµγ5γ

µΨ − 1

4z
γµγ5γµΨΨ

)

, (3.24)

The two spin connection terms cancel since γµγ5γµΨΨ = Ψγµγ5γ
µΨ, so that upon including a

bulk mass term,

S =

∫

d5x
i

2

(
R

z

)4

ΨγM←→
∂MΨ −

∫

d5x
i

2

(
R

z

)5

mΨΨ (3.25)

=

∫

d5x
i

2

(
R

z

)4

Ψ
(

γM←→
∂M − c

z

)

Ψ, (3.26)

where c = mR = m/k is a dimensionless parameter that is the ratio of the bulk mass to the
curvature. As we will see, the bulk mass does not contribute directly to the 4D Kaluza-Klein
mass spectrum of the model. Instead, c determines the localization of the 5D wavefunction.
This, in turn, determines the overlap with the Higgs field and the contribution to masses from
electroweak symmetry breaking. More comprehensive discussions can be found in the original
paper by Grossman and Neubert [9] or the review by Gherghetta [11].
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3.2 Right-acting RS Fermionic Action

When deriving the Dirac equation from the variational principle we set all of our operators to be
right-acting, i.e. acting on Ψ, so that we can vary with respect to Ψ to get an operator equation
for Ψ. Obtaining this is from eq. (3.26) is now a straightforward matter of integration by parts of
the left-acting derivative term. Note that it is now crucially important that we pick up a derivative
acting on the metric/vielbein factor (R/z)4. We would have missed this term if he had mistakenly
written our original ‘canonical action,’ eq. (2.11), as being right-acting only.

The integration by parts for the M = µ = 0, · · · , 4 terms proceeds trivially since these direc-
tions have no boundary and the metric/vielbein factor is independent of them. Doing the M = 5
integration by parts we find

S =

∫

d4x

∫ R

R′

dz

(
R

z

)4

Ψ

(

i/∂ +
i

2
γ5←→∂5 − c

z

)

Ψ (3.27)

=

∫

d4x

∫ R

R′

dz

(
R

z

)4

Ψ

(

i/∂ + iγ5∂5 − i
2

z
γ5 − c

z

)

Ψ + (boundary term)|RR′ . (3.28)

The term in the parenthesis can be identified with the Dirac operator for the Randall-Sundrum
model with bulk fermions. (This ‘definition’ is up to conventions regarding the inclusion of the
mass term and factors of i.) The boundary term takes the form

(boundary) = (R/z)4 (
ψχ − χψ

)∣
∣
R

R′
, (3.29)

where we’ve written out the Dirac spinor Ψ in terms of two-component Weyl spinors χ and ψ.
This term vanishes when we impose chiral boundary conditions, which we shall review in the next
section. The final form of the RS fermion action is

S =

∫

d4x

∫ R

R′

dz

(
R

z

)4

Ψ

(

i/∂ + iγ5∂5 − i
2

z
γ5 − c

z

)

Ψ. (3.30)

In terms of Weyl spinors this has the form

S =

∫

d4x

∫ R

R′

dz

(
R

z

)4
(
ψ χ

)
(−∂5 + 2−c

z
i/∂

i/∂ ∂5 − 2+c
z

) (
χ

ψ

)

, (3.31)

where /v = vµσ
µ, /v = vµσ

µ.

3.3 Chiral boundary conditions

Recall that 5D theories are vectorlike, meaning that the fundamental spinor representation is a
Dirac spinor (containing both left- and right-handed components) rather than a chiral Weyl spinor.
This can be understood by consider γ5. In four dimensions γ5 ∼ γ0γ1γ2γ3 is a special operator
that can be used to project chiralities via PL,R = 1

2
(1 ± iγ5), noting the different normalization

from usual QFT texts (see the Appendix on conventions). In 5D, however, γ5 is just the gamma
matrix corresponding to the z direction and there is no analogous ‘special’ gamma matrix. The
γ0, · · · , γ5 form a basis for the four component spinor representation of the Clifford algebra. One

8



can find a good discussion of the Clifford algebra and spinor representation in various dimensions
in the appendices of volume 2 of Polchinksi [12].

The vector nature of 5D spinors is an immediate problem for model-building since the Stan-
dard Model is manifestly chiral and there appears to be no way to write down a chiral fermion
without immediately introducing a partner fermion of opposite chirality and the same couplings4.
To get around this problem we can relax our requirement that the bulk 5D fermion be chiral.
Phenomenologically, all that is strictly required is that the zero modes of these fermions are
chiral.

We can project out the zero modes of the bad-chirality (Weyl spinor) components of a bulk
Dirac 5D fermion by imposing chiral boundary conditions: namely that these bad-chirality com-
ponents vanish on the branes. This prohibits this component from having a zero mode since zero
modes have a trivial 5D profile and the only such profile compatible with the chiral boundary con-
ditions is identically zero everywhere. For left-chiral boundary conditions, ψ = 0 on the branes,
while for right-chiral boundary conditions χ = 0 on the branes. Thus we are guaranteed that both
terms in eq. (3.29) vanish at z = R,R′ for either chirality.

Imposing these chiral boundary conditions are completely equivalent to the statement that the
Randall-Sundrum compactified extra dimension is an orbifold. From a phenomenological point of
view the language of boundary conditions is preferred since it avoids potential ambiguities with
the sign of the fermion mass term. Further the language of boundary conditions best connects to
the actual process of solving partial differential equations that we will follow.

These chiral boundary conditions cancel the boundary term that appears when converting
a right-acting Dirac operator into a canonical Dirac operator that we discussed in section 2.4.
It is precisely because of these chiral boundary conditions (i.e. orbifolding) that the Grossman
Neubert paper on bulk neutrinos in RS had the correct fermion action despite using the erroneous
right-acting action from Bertlmann’s text.

Boundary conditions for compact spaces were first discussed in this light in the paper by the
‘Three Musketeers5,’ and Grojean [13].

4 Determining the propagator

We now have a Dirac operator which we shall write as

D = i/∂ + iγ5∂5 − i
2

z
γ5 − c

z
, (4.1)

so that we may write down the RS Dirac equation as

(R/z)4 DΨ = 0, (4.2)

where we’ve included the warp factors from the metric and vielbein. The propagator from point
x′ to x, ∆(x − x′), is then defined to be the Green’s function of the Dirac operator,

(R/z)4 D∆(x − x′) = iδ(5)(x − x′), (4.3)

4The same problem is found in N > 1 supersymmetric models.
5Jay Hubisz is apparently d’Artagnan. I believe Christophe should be George Villiers for sheer irony.
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that satisfies the appropriate boundary conditions. This is, at least, what we would write down
from our intuition based on flat space quantum field theory. However, one must be careful since
the δ(5)(x−x′) is not written in a manifestly covariant way. This equation turns out to be correct,
but we should note that one should be more careful with the derivation. We must be sure that
the right-hand side of this equation is correct in powers of the warp factor.

4.1 Proper derivation of the Green’s function equation

Recalling the path integral formalism, let us write down the action with the appropriate fermionic
sources,

S =

∫

d5x
√

|g|
{

i

2
EM

a Ψγa←→DMΨ + JΨ + ΨJ

}

. (4.4)

Varying with respect to Ψ, we get the equation of motion

(R/z)4 D∆(x − x′) = (R/z)5J, (4.5)

where the right-hand side now has a factor of
√

|g|. Usually in quantum field theory we set
J(x) = iδ(d)(x− x′). The factor of i is the usual factor obtained in 4D Minkowski QFT, e.g. from
variation of the generating functional. This source requires some modification, however, since the
δ function is not covariant with respect to diffeomorphism invariance. The correct covariant δ
function is

δ(d)(x − x′) → δ(d)
(√

|g|(x − x′)
)

=
δ(d)(x − x′)

√

|g|
. (4.6)

The inverse power of
√

|g| is precisely what is necessary to cancel the factor of
√

|g| from the
integration measure in the action, and we are left with precisely eq. (4.3).

In the rest of this section we shall derive the ‘mixed position-momentum space’ propagator
on the RS background, ∆(p, z, z′), where a fermion of 4-momentum p propagates from a position
z′ to z in the fifth dimension. This was discussed for scalars and spin-2 particles in Giddings,
Katz, Randall [14] and Randall and Schwartz [15]. A pedagogical introduction the derivation and
calculation of these propagators in flat compactifications is presented in Puchwein and Kunzst
[16], though we shall follow what we feel is a more intuitive derivation.

4.2 The position space propagator

Let us define our RS Dirac operator as

D = i

(

γM∂M − 2

z
γ5

)

− c

z
, (4.7)

so that the action takes the form

S =

∫

d4x

∫

dz (R/z)4 ΨDΨ. (4.8)
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The equation of motion that we must solve is

(R/z)4D∆(x) = iδ(5)(x − x′), (4.9)

where ∆(x) is the Dirac Green’s function that, upon imposing appropriate boundary conditions, we
will identify with the bulk fermion propagator. Because of the Dirac structure in D this equation
is difficult to disentangle to solve. We shall make use of a handy trick analogous to the usual
4D case where we ‘square’ the Dirac equation into a scalar equation, where the phrase ‘square’ is
used colloquially and with no mathematical rigor6. Define the ‘conjugate’ (also a colloquial term)
Dirac operator as

D∗ = −i

(

γM∂M − 2

z
γ5

)

− c

z
. (4.10)

One can then note that the product of these operators takes the form

DD∗ =

(

γM∂M − 2

z
γ5

)2

+
c2

z2
− i γM

(

∂M
c

z

)

︸ ︷︷ ︸

−γ5 c
z2

. (4.11)

The first term on the right-hand side is

(

γM∂M − 2

z
γ5

)2

= ∂M∂M − γM∂M

(

γ5 2

z

)

−2

z
γMγ5∂M − 2

z
γ5γM∂M

︸ ︷︷ ︸

cancels for M 6=5

+
4

z2

(
γ5

)2
(4.12)

= ∂M∂M +
2

z2

(
γ5

)2 − 4

z

(
γ5

)2
∂5 +

4

z2

(
γ5

)2
(4.13)

= ∂M∂M − 6

z2
+

4

z
∂5. (4.14)

Thus, finally, we are left with a ‘squared’ Dirac operator

DD∗ = ∂M∂M +
1

z2

(
c2 + iγ5c − 6 + 4z∂5

)
, (4.15)

where one should recall that in our conventions iγ5 = diag(−1,1). The operator is not scalar, but
it is at least manifestly diagonal and can be decomposed into scalar equations on Weyl spinors.
For simplicity we shall write

DD∗ =

(
DD∗

− 0
0 DD∗

+

)

, DD∗
± = ∂µ∂

µ − ∂2
5 +

4

z
∂5 +

c2 ± c − 6

z2
. (4.16)

6Even though this is not an honest conjugate or ‘squaring’ of the Dirac operator, there is an interesting math-
ematical digression to be made regarding the actual conjugate Dirac operator. In flat space, the Dirac operator
squares to the Klein-Gordon operator exactly. In general curved spaces the square of the (massless) Dirac operator
differs from the square of the covariant derivative (box) by a polynomial in the curvature. This is the so-called
Weitzenböck decomposition: D2 = ∇∗∇+ 1

4
R. See, for example, N. Hitchin, “The Dirac Operator,” in Invitations

to Geometry and Topology.
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Let us now write down a diagonal 2 × 2 matrix of scalar functions in Weyl spinor space, F (x) =
diag(F−(x), F+(x)) such that

(R/z)4 DD∗F (x) =

(
R

z

)4 (
DD∗

− 0
0 DD∗

+

)(
F−(x) 0

0 F+(x)

)

= iδ(5)(x − x′). (4.17)

Solving for F±(x) reduces to the usual program of solving partial differential equations with
boundary conditions for scalar functions. The trick is that upon finding the F functions, we
automatically (i.e. by construction) get solutions for the Dirac Green’s function equation, eq. (4.3),

∆(x) = D∗F (x) =

(
∂5F−(x) − 2+c

z
F−(x) −iσµ∂µF+(x)

−iσµ∂µF−(x) −∂5F+(x) + 2−c
z

F+(x)

)

. (4.18)

4.3 Mixed Position-Momentum Space Propagator

Thus far all of our calculations have been in 5D position space. Since each z-slice of the Randall
Sundrum AdS space is flat with respect to the 4D Minkowski directions we may make use of the
usual method of Fourier transforming to momentum space for these directions. Note that on the
compactified (z) direction we do not want to go into momentum space. It is important to work in
position space for the z direction because we want to be able to describe brane-localized operators
and the overlap of bulk fields.

Let’s start with a review of how this Fourier transform works for a general Green’s function
equation for an operator O(∂µ, ∂5). The Green’s function equation is

O(∂µ, ∂5)f(x − x′, z, z′) = iδ(4)(x − x′)δ(5)(z − z′). (4.19)

We first perform a Fourier transform on the 4D coordinates with respect to a dummy variable p′,
∫

d̄ 4p′ eip′x O(ip′, ∂5)f(p′, z, z′) = iδ(z − z′)

∫

d̄ 4p eip′x, (4.20)

where we’ve used 4D Lorentz invariance to shift x′ to zero. We can now project upon a particular
momentum mode p by multiplying both sides by e−ipx and integrating over d4x.

∫

d4x

∫

d̄ 4p′ei(p−p′)x O(ip′, ∂5)f(p′, z, z′) = iδ(z − z′)

∫

d4x d̄ 4p′ei(p′−p)x (4.21)
∫

d̄ 4p′δ(4)(p′ − p)O(ip′, ∂5)f(p′, z, z′) = iδ(4)(z − z′)

∫

d̄ 4p δ(p′ − p). (4.22)

From this we finally derive the mixed position-momentum space Green’s function equations,

O(ip, ∂5)f(p, z, z′) = iδ(z − z′). (4.23)

Thus we are now left with a one-dimensional Green’s function equation to solve in position spaece.
For our ‘Dirac-squared’ operator above, eq. (4.16), this yields

DD±F±(p, z, z′) =

(

−p2 − ∂2
5 +

4

z
∂5 +

c2 ± c − 6

z2

)

F±(p, z, z′). (4.24)
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4.4 Solving the differential equation

We now follow the usual procedure for solving the Green’s function equation that one is familiar
with from electromagnetism. The calculations can now become rather messy, so we’ve provided
a model calculation for a bulk fermion on a flat extra dimension in Appendix B. We split the
solution into two parts corresponding to the solution F>

± (p, z, z′) for z > z′ and the solution
F<
± (p, z, z′) for z < z′. In each of these regimes one avoids the δ function on the right-hand side

of the Green’s function equation so that one only needs to find the solution to the homogenous
differential equation:

(

−p2 − ∂2
5 +

4

z
∂5 +

c2 ± c − 6

z2

)

F<,>
± (p, z, z′) = 0. (4.25)

This has a general solution

F<,>
± (p, z, z′) = A<,>

± z5/2Jc±1/2(χpz) + B<,>
± z5/2Yc±1/2(χpz). (4.26)

The Jc±1/2 and Yc±1/2 are Bessel functions of the first and second kinds (Y is occasionally called

N for Neumann function). χp is the shorthand used in the literature for
√

p2, where p2 =
pµp

µ. The eight coefficients A<,>
± and B<,>

± are determined by boundary conditions on the brane
(chiral/orbifold boundary conditions) and matching conditions at the point z = z′.

Csáki, Grojean, Hubiz, Shirman, and Terning (‘the Three Musketeers, Christophe, and Jay’)
[13] noted that since the Dirac equation is first order one doesn’t need separate boundary conditions
for the Weyl spinor fields χ and ψ that live in a Dirac fermion. In fact, specifying separate boundary
conditions overconstrains the system. The point is that the (bulk) Dirac equation evaluated at
the boundaries convert ψ boundary conditions into χ boundary conditions and vice versa.

Our approach is rather different but makes their observation more manifest. By ‘squaring’ the
Dirac equation we now work with a second order scalar equation. There are no ambiguities about
the Dirac equation coupling different components of the Green’s function. In the previous point of
view, imposing the Dirac equation on the branes to obtain boundary conditions for the opposite-
chirality Weyl spinor is automatically satisfied by construction in eq. (4.18). As a second-order
equation there is now an additional constant to be solved for, but this is taken care of by an
additional matching condition. Thus the two approaches are completely equivalent, though the
present procedure has the benefit of additional clarity.

Our first boundary condition we’ll impose is the jump conditon at z = z′ obtained from
integrating the Green’s function equation over a sliver about the source at z′.

∫ z′+ǫ

z′−ǫ

dz

(
R

z

)4 [

−p2 − ∂2
5 +

4

z
∂5 +

c2 ± c − 6

z2

]

F±(p, z, z′) = i

∫ z′+ǫ

z′−ǫ

dz δ(z − z′), (4.27)

where we’ve explicitly included the (R/z)4 term since we are now working with the inhomogeneous
Green’s function. Only the terms with ∂5s survive the limit when ǫ → 0.

−∂5 F±(p, z, z′)|z′+ǫ
z′−ǫ −

4

z
F±(p, z, z′)|z′+ǫ

z′−ǫ +

∫ z′+ǫ

z′−ǫ

dz

(

∂5
4

z

)

F±(p, z, z′) = i

(
R

z′

)−4

(4.28)
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The last term drops out as ǫ → 0, so that the jump boundary condition takes the form

(

∂5 +
4

z′

)

F>
± (p, z′, z′) −

(

∂5 +
4

z′

)

F<
± (p, z′, z′) = −i

(
z′

R

)4

. (4.29)

Here used F±(p, z′ + ǫ, z′) = F>
± (p, z′, z′) and F±(p, z′ − ǫ, z′) = F<

± (p, z′, z′).
The next boundary condition that we would like to impose is continuity of F±(p, z, z′) at z = z′.

This comes about because even though we’ve seen above that the first derivative is discontinuous
at z′ (as one expects for a second order differential equation), but non-singular. Thus we impose

F>
± (p, z′, z′) = F<

± (p, z′, z′). (4.30)

Note that plugging this back into the jump condition causes the (4/z′) terms to cancel.
The remaining boundary conditions come from the chiral (orbifold) bonditions on the branes,

z = R′, R. To impose these, let us write the Dirac Green’s function eq. (4.18) as

∆ = D∗F =

(
∆11 ∆12

∆21 ∆22

)

=

(
∆χψ ∆χχ

∆ψψ ∆ψχ

)

, (4.31)

where we’ve broken down the Dirac propagator into a matrix of Weyl propagators. For example,
∆χψ(p, z, z′) is the propagator of a ψ (chiral right-handed spinor) at z′ propagating into a χ (chiral
left-handed spinor) at z with four-momentum p. One may see this heuristically by recalling that
the propagator can be written heuristically as

∆ ∼ ΨΨ ∼
(

χψ χχ

ψψ ψχ

)

. (4.32)

From this point on our boundary conditions will depend on whether we are consider left-handed
fermion propagators ∆L or right-handed fermion propagators ∆R, where it is understood that the
handedness we refer to is the chirality of the zero mode. For a bulk propagator of zero-mode
chirality X ∈ {L,R}, our boundary conditions impose that the ‘wrong chirality’ component of
the field cannot propagate to either brane. For example, a left-handed bulk fermion Ψ = χ ⊕ ψ
must have its right-handed component vanish at the boundary ψ(R′) = ψ(R) = 0. Explicitly, we
impose

0 = ∆L
ψχ(p,R, z′) = ∆L

ψψ(p,R, z′) (4.33)

0 = ∆L
ψχ(p,R′, z′) = ∆L

ψψ(p,R′, z′) (4.34)

0 = ∆R
χχ(p,R, z′) = ∆R

χψ(p,R, z′) (4.35)

0 = ∆R
χχ(p,R′, z′) = ∆R

χψ(p,R′, z′). (4.36)

More succinctly,

∆L(p, z, z′)
∣
∣
z=R,R′

=

(
∆χψ ∆χχ

0 0

)

∆R(p, z, z′)
∣
∣
z=R,R′

=

(
0 0

∆ψψ ∆ψχ

)

. (4.37)
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One can now count that for a given chirality this gives eight equations for eight unknowns. One
might ask whether we’ve missed something, since in principle our boundary conditions should also
prohibit wrong-chirality modes of fermion propagators coming from either brane, i.e. z′ = R,R′.
The short answer is that these boundary conditions are automatically satisfied by when imposing
the to-the-brane boundary conditions.

∆L(p, z, z′)
∣
∣
z′=R,R′

=

(
0 ∆χχ

0 ∆ψχ

)

∆R(p, z, z′)
∣
∣
z′=R,R′

=

(
∆χψ 0
∆ψψ 0

)

. (4.38)

Just to show off that we can write this yet another way, let us say

PR ∆L(p, z, z′)
∣
∣
z=R,R′

= PRD∗ FL(p, z, z′)
∣
∣
z=R,R′

= 0 (4.39)

PL ∆R(p, z, z′)
∣
∣
z=R,R′

= PLD∗ FR(p, z, z′)
∣
∣
z=R,R′

= 0. (4.40)

From eq. (4.18), we may write these in terms of the FL and FR functions,

0 = −iσµ∂µ FL
−(p, z, z′)

∣
∣
z=R,R′

0 =

(

−∂5 +
2

z
− c

z

)

FL
+(p, z, z′)

∣
∣
z=R,R′

(4.41)

0 = −iσµ∂µ FR
+ (p, z, z′)

∣
∣
z=R,R′

0 =

(

∂5 −
2

z
− c

z

)

FR
− (p, z, z′)

∣
∣
z=R,R′

. (4.42)

We note that p can take any value so that these equations can be written

0 = FL
−(p, z, z′)

∣
∣
z=R,R′

0 =

(

∂5 −
2

z
+

c

z

)

FL
+(p, z, z′)

∣
∣
z=R,R′

(4.43)

0 = FR
+ (p, z, z′)

∣
∣
z=R,R′

0 =

(

∂5 −
2

z
− c

z

)

FR
− (p, z, z′)

∣
∣
z=R,R′

. (4.44)

Note that the left- and right-handed boundary conditions are related by F+ ↔ F− (which trans-
lates to χ ↔ ψ) and c ↔ −c.

Now we’ve written all of our boundary conditions in terms of constraints on the F functions.

4.5 Addendum: Jump Condition

This is a quick post-facto aside to mention that the derivation above for the jump condition of
eq. (4.27),

∫ z′+ǫ

z′−ǫ

dz

(
R

z

)4 [

−p2 − ∂2
5 +

4

z
∂5 +

c2 ± c − 6

z2

]

F±(p, z, z′) = i

∫ z′+ǫ

z′−ǫ

dz δ(z − z′). (4.45)

The above derivation of the jump condition cheated a little in shifting the (R/z)4 back and forth,
even though the final result is correct. Here we re-derive the jump condition so that we may
proceed with a good conscience. Performing the integration by parts for the left-hand side of the
above equation and dropping terms that vanish in the ǫ → 0 limit, we find

[

−
(

R

z

)4

∂5F + 4
R4

z5
F

]z′+ǫ

z′−ǫ

−
∫ z′+ǫ

z′−ǫ

dz

(

−∂5

(
R

z

)4

∂5F + ∂5

(

4
R4

z5

)

F

)

. (4.46)
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Note that expressions of the form z−5 and z−4 are continuous at z′ ∈ [R,R′] and we have shown
above that F (z = z′ + ǫ) = F (z = z′ − ǫ). The only discontinuity that can appear, then, is in the
expression ∂5F . Thus two the terms multiplied by 4 both vanish in the ǫ → 0 limit, so that we’re
left with a jump condition

[

−
(

R

z

)4

∂5F

]z′+ǫ

z′−ǫ

+

∫ z′+ǫ

z′−ǫ

dz ∂5

(
R

z

)4

∂5F = i. (4.47)

The remaining integral should be performed by integrating by parts once more,

∫ z′+ǫ

z′−ǫ

dz ∂5

(
R

z

)4

∂5F =

[

∂5

(
R

z

)2

F

]z′+ǫ

z′−ǫ

−
∫ z′+ǫ

z′−ǫ

dz ∂2
5

(
R

z

)4

F. (4.48)

Now both sides on the right-hand side are independent of ∂5 and thus vanish in the ǫ → 0 limit.
Thus our jump condition reduces to

−
(

R

z′

)4 [

∂5F
]z′+ǫ

z′−ǫ
= i. (4.49)

Summary of boundary conditions:
Before proceeding, let us summarize the boundary conditions here:

∂5F
>
± (p, z′, z′) − ∂5F

<
± (p, z′, z′) = −i

(
z′

R

)4

. (4.50)

F>
± (p, z′, z′) = F<

± (p, z′, z′). (4.51)

0 = FL
−(p, z, z′)

∣
∣
z=R,R′

0 =

(

∂5 −
2

z
+

c

z

)

FL
+(p, z, z′)

∣
∣
z=R,R′

(4.52)

0 = FR
+ (p, z, z′)

∣
∣
z=R,R′

0 =

(

∂5 −
2

z
− c

z

)

FR
− (p, z, z′)

∣
∣
z=R,R′

. (4.53)

Now all that remains is to determine the coefficients A<,>
± and B<,>

± from eq. (4.26). This can be
solved straightforwardly using Mathematica.

4.6 Solution of Coefficients

Define the following ‘antisymmetric’ auxiliary functions,

S±
c (x, y) = Jc± 1

2

(x)Yc± 1

2

(y) − Jc± 1

2

(y)Yc± 1

2

(x) (4.54)

S×
c (x, y) = Jc+ 1

2

(x)Yc− 1

2

(y) − Jc− 1

2

(y)Yc+ 1

2

(x) (4.55)

S÷
c (x, y) = Jc− 1

2

(x)Yc+ 1

2

(y) − Jc+ 1

2

(y)Yc− 1

2

(x). (4.56)
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Even though S÷
c (x, y) = −S×

c (y, x), we define it separately for future simplicity.
The results of the Mathematica output is not pretty, but we will beautify it along the way7. To

provide robustness against typos, we’ll start by explicitly providing the complete result. Writing
the common factor C = iπz′5/2

2R4 , the left-handed results are

AL<
+ = −CYc− 1

2

(χpR)
S×

c (χpz
′, χpR

′)

S−
c (χpR,χpR′)

AL>
+ = −CYc− 1

2

(χpR
′)

S×
c (χpz

′, χpR)

S−
c (χpR,χpR′)

BL<
+ = CJc− 1

2

(χpR)
S×

c (χpz
′, χpR

′)

S−
c (χpR,χpR′)

BL>
+ = CJc− 1

2

(χpR
′)

S×
c (χpz

′, χpR)

S−
c (χpR,χpR′)

AL<
− = −CYc− 1

2

(χpR)
S−

c (χpz
′, χpR

′)

S−
c (χpR,χpR′)

AL>
− = −CYc− 1

2

(χpR
′)

S−
c (χpz

′, χpR)

S−
c (χpR,χpR′)

BL<
− = CJc− 1

2

(χpR)
S−

c (χpz
′, χpR

′)

S−
c (χpR,χpR′)

BL>
− = CJc− 1

2

(χpR
′)

S−
c (χpz

′, χpR)

S−
c (χpR,χpR′)

.

Note that the As and Bs differ by Y → J and swapping R ↔ R′. (This swap also gives the
relative sign due to the antisymmetry of the S−

c auxiliary function in the denominator.) The +
and − values differ by swapping S×

c → S−
c in the numerator only. The right-handed equations are

very similar,

AR<
+ = −CYc+ 1

2

(χpR)
S+

c (χpz
′, χpR

′)

S+
c (χpR,χpR′)

AR>
+ = −CYc+ 1

2

(χpR
′)

S+
c (χpz

′, χpR)

S+
c (χpR,χpR′)

BR<
+ = CJc+ 1

2

(χpR)
S+

c (χpz
′, χpR

′)

S+
c (χpR,χpR′)

BR>
+ = CJc+ 1

2

(χpR
′)

S+
c (χpz

′, χpR)

S+
c (χpR,χpR′)

AR<
− = −CYc+ 1

2

(χpR)
S÷

c (χpz
′, χpR

′)

S+
c (χpR,χpR′)

AR>
− = −CYc+ 1

2

(χpR
′)

S÷
c (χpz

′, χpR)

S+
c (χpR,χpR′)

BR<
− = CJc+ 1

2

(χpR)
S÷

c (χpz
′, χpR

′)

S+
c (χpR,χpR′)

BR>
− = CJc+ 1

2

(χpR
′)

S÷
c (χpz

′, χpR)

S+
c (χpR,χpR′)

.

These right-handed results are obtained from the left-handed results by swapping the sign of the
1/2 in the index of the explicit Bessel function. Doing this in the denominator also changes the
S−

c to S+
c . Finally, we make the replacements in the numerator: S×

c → S+
c and S−

c → S÷
c . If all

of this still looks rather complicated, note that one can simplify by writing out all the arguments
in terms of dimensionless variables e.g. write all length scales in units of 1/χp, essentially setting
χp = 1 in all the arguments.

Our task now is to write this out in a succinct, human-readable form. We see a rather nice
symmetry where all of the indices are transformed according to

L ↔ R (4.57)

± ↔ ∓. (4.58)

7“You can put lipstick on a pig, but it’s still a pig,” Barack Obama, 9 September 2008.
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Note that this only holds for indices, so that, e.g.

A+ → A− (4.59)

S+
c → S−

c (4.60)

c +
1

2
→ c − 1

2
, (4.61)

but the overall sign on the C coefficient does not change. This symmetries is not so surprising
given the symmetry between the left- and right-handed boundary conditions.

Recall the general solution of our F functions, eq. (4.26),

F<,>
± (p, z, z′) = A<,>

± z5/2Jc±1/2(χpz) + B<,>
± z5/2Yc±1/2(χpz). (4.26)

We recall that all of the B coefficients carry an overall minus sign, so the z-dependent Bessel
functions can also be written in terms of our auxiliary functions, eqs. (4.54-4.56).

FL<
+ = αL (zz′)

5/2
S×

c (χpz
′, χpR

′) S÷
c (χpR,χpz) (4.62)

FL>
+ = αL (zz′)

5/2
S×

c (χpz
′, χpR) S÷

c (χpR
′, χpz) (4.63)

FL<
− = αL (zz′)

5/2
S−

c (χpz
′, χpR

′) S−
c (χpR,χpz) (4.64)

FL>
− = αL (zz′)

5/2
S−

c (χpz
′, χpR) S−

c (χpR
′, χpz) (4.65)

FR<
+ = αL (zz′)

5/2
S+

c (χpz
′, χpR

′) S+
c (χpR,χpz) (4.66)

FR>
+ = αL (zz′)

5/2
S+

c (χpz
′, χpR) S+

c (χpR
′, χpz) (4.67)

FR<
− = αL (zz′)

5/2
S÷

c (χpz
′, χpR

′) S×
c (χpR,χpz) (4.68)

FR>
− = αL (zz′)

5/2
S÷

c (χpz
′, χpR) S×

c (χpR
′, χpz). (4.69)

We have defined the overall coefficients as

αL =
iπ

2R4

1

S−
c (χpR,χpR′)

αR =
iπ

2R4

1

S+
c (χpR,χpR′)

. (4.70)

It is actually sufficient to just write down the F< functions and note that the F> functions can
be obtained by {z ↔ z′}. (One should remember that S× and S÷ are related by a minus sign.)
The final form of the propagator is

∆(p, z, z′) ≡ D∗F (p, z, z′) =

(
∂5F−(x) − 2+c

z
F−(x) −iσµ∂µF+(x)

−iσµ∂µF−(x) −∂5F+(x) + 2−c
z

F+(x)

)

. (4.71)

Note the manifest z ↔ z′ symmetry that one expects from the Green’s function.

5 KK mode profiles

It is now useful to include a quick discussion of the zero mode (more generally nth-mode) profile
since the external states for processes are interested in are typically zero modes. The profiles are
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derived pedagogically in Csáki’s TASI 04 lectures [2], but we repeat the derivation here because
of ideological differences8.

The 4D equations of motion for the KK modes can be obtained from varying the bulk RS
fermionic action, eq. (3.31). Even though the fundamental fermion representation in 5D is the
Dirac spinor, we shall write the equations of motion in terms of Weyl spinors in anticipation of
KK-reduction to 4D modes. The result is

0 = iσ · ∂χ + ∂5ψ − c + 2

z
ψ (5.1)

0 = iσ · ∂ψ − ∂5χ − c − 2

z
χ. (5.2)

We now expand our Weyl spinors in terms of an orthonormal9 basis of left-handed (fn(z)) and
right-handed (gn(z)) 5D profiles10, i.e. we make the usual Kaluza-Klein decomposition ansatz

χ(x, z) =
∑

n

fn(z)χn(x) (5.3)

ψ(x, z) =
∑

n

gn(z)ψn(x). (5.4)

The functions fn and gn are real so one never has to worry about picking up signs during complex
conjugation. By assumption the KK modes each satisfy 4D Dirac equations for different KK
masses mn so that

0 = i/∂χn(x) − mnψn(x) (5.5)

0 = i/∂ψn(x) − mnχn(x), (5.6)

where there is no implied sum over n. Plugging this into the 5D equation of motion we get the
5D profiles must satisfy

0 = g′
n(z) + mnfn(z) − c + 2

z
gn(z) (5.7)

0 = f ′
n(z) − mngn(z) +

c − 2

z
fn(z). (5.8)

Note that in this last step we have implicitly used the orthogonality of the 4D fields so that these
equations also do not have an implied sum over n. We can now set mn = 0 and solve for the

8Namely we disagree with their normalization of σ0. This shows up as an overall sign in the action so that it
makes no difference... but really, guys, who uses σ0 = −1? (The authors of those lectures claim that this was to
match up with the original literature [13].)

9Orthonormality is defined with respect to the fermion inner product of Section 2.3.
10Here again we differ in notation from Csáki et al’s TASI lecture [2], this time via the choice of denoting left-

handed 5D profiles by fn and right-handed by gn rather than vice versa. The present notation is more standard in
current literature. Note that we will also alternately use the notation where all profiles are denoted by f with the
particle species and chirality denoted explicitly, e.g. fn

E for a right-chiral n-mode electron and fn
L for its left-chiral

SU(2) doublet sister.
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zero-mode profile, obtaining (up to normalization)

f0 = A0

( z

R

)2−c

(5.9)

g0 = B0

( z

R

)c+2

, (5.10)

where we’ve defined A0 and B0 to be constants of dimension 1/2. We can go on and solve for these
constants by demanding that the zero mode fermions are canonically normalized. For example,
plugging into the action and integrating over dz,

S =

∫

d4x

∫ R′

R

dz

(
R

z

)4

iχσµ∂µχ + · · · (5.11)

=

∫

d4x

∫ R′

R

dz

(
R

z

)4

iA0

( z

R

)2−c

χ0σ
µ∂µA0

( z

R

)2−c

χ0 + · · · (5.12)

= A2
0

∫

d4x

∫ R′

R

dz
( z

R

)−2c

iχ0σ
µ∂µχ0 + · · · (5.13)

= A2
0 R2c

∫

d4x

[
z1−2c

1 − 2c

]R′

R

iχ0σ
µ∂µχ0 + · · · (5.14)

= A2
0 R2c 1

1 − 2c

[
(R′)1−2c − R1−2c

]
∫

d4x iχ0σ
µ∂µχ0 + · · · (5.15)

In order to get the right normalization, the overall prefactor must be unity, thus

A2
0 =

1 − 2c

R2c [(R′)1−2c − R1−2c]
(5.16)

=
1 − 2c

R2c(R′)1−2c [1 − (R/R′)1−2c]
(5.17)

=
1

R′

(
R′

R

)2c
1 − 2c

1 − (R/R′)1−2c
. (5.18)

Finally, we may write the zero mode left-handed fermion (i.e. zero mode left-chiral fermion
associated with a vector-like 5D fermion with left-handed boundary conditions).

χ0(x, z) = χ0(x)f0(z) (5.19)

=
1√
R′

(
R′

R

)c
√

1 − 2c

1 − (R/R′)1−2c

( z

R

)2 ( z

R

)−c

χ0(x) (5.20)

=
1√
R′

√

1 − 2c

1 − (R/R′)1−2c

( z

R

)2 ( z

R′

)−c

χ0(x) (5.21)

≡ 1√
R′

( z

R

)2 ( z

R′

)−c

fcχ0(x), (5.22)
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where we’ve defined the prefactor fc. Note that we haven’t considered the special case c = 1/2
where the zero-mode fermion profile is ‘flat’ relative to the warping. In this case Eq. (5.14) is no
longer correct and the term in the brackets is replaced by a term with logs11.

Similarly, for right-handed fermions

S =

∫

d4x

∫ R′

R

dz

(
R

z

)4

iψσµ∂µψ + · · · (5.23)

= B2
0

∫

d4x

∫ R′

R

dz
( z

R

)2c

iψ0σ
µ∂µψ0 + · · · (5.24)

= B2
0

1

R2c

1

1 + 2c

[
(R′)1+2c − R1+2c

]
∫

d4x iψ0σ
µ∂µψ0 + · · · . (5.25)

Fixing the normalization,

B2
0 =

R2c (1 + 2c)

[(R′)1+2c − R1+2c]
(5.26)

=
1

R′

(
R′

R

)−2c
1 + 2c

1 − (R/R′)1+2c
, (5.27)

as a sanity-check we note that this reproduces the left-handed coefficient when c → −c. The zero
mode right-handed fermion is

ψ0(x, z) = ψ0(x)f0(z) (5.28)

=
1√
R′

(
R′

R

)−c
√

1 + 2c

1 − (R/R′)1+2c

( z

R

)2 ( z

R

)c

ψ0 (5.29)

=
1√
R′

√

1 + 2c

1 − (R/R′)1+2c

( z

R

)2 ( z

R′

)c

ψ0 (5.30)

≡ 1√
R′

( z

R

)2 ( z

R′

)c

gcψ0, (5.31)

where we’ve defined the coefficient gc similar to fc above. Note, however, that these are simply
related by

gc = f−c, (5.32)

and so it is common to say that right-handed fermions take negative values for c.
The next important point is the localization of these zero modes. Even though we’ve written

down the 5D profiles for the zero modes, the localization is nontrivial since one must take into
account the effect of the warp factor. Recall that we used the following normalization conditions,

A2
0

∫ R′

R

dz
( z

R

)−2c

= B2
0

∫ R′

R

dz
( z

R

)2c

= 1. (5.33)

11The authors thank Felix Yu for bringing this up. This can lead to some confusion in the normalization when
dealing with fields in the ‘conformal limit.’ See the discussion in Gherghetta and Pomarol [17] below equation (50).
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A tricky way to understand the localization of the zero modes is to play with the limits of integra-
tion of the integrals, remembering that they already include the effect of the warp factor. Let’s
first focus on the A0 integral for fermions with left-handed boundary conditions.

• Sending the IR brane to infinity, R′ → ∞, we see that the A0 integral remains convergent
for c > 1/2. This means that for c > 1/2 the fermion is localized on the UV brane.

• On the other hand, sending the UV brane to zero, R → 0, we see that the integral remains
convergent for c < 1/2 and we say that the fermion is localized on the IR brane.

For fermions with right-chiral boundary conditions, the conditions get an overall sign.

• For R′ → ∞, the B0 integral is finite for c < −1/2.

• For R → 0 it is finite for c > −1/2.

So we see the generic feature of extra dimensional theories on an interval where the bulk mass
of a field determines that field’s localization. For fermions the transition between IR and UV
localization occurs at |c| = 1/2.

For completeness, let us mention the higher KK modes, for which one must solve eqns. (5.7-5.8)
for nonzero mn. This is solved by combining the two coupled first-order differential equations to
obtain second-order equations,

f ′′
n +

4

z
f ′

n +

(

m2
n − c2 + c − 6

z

)

fn = 0 (5.34)

g′′
n +

4

z
g′

n +

(

m2
n − c2 − c − 6

z

)

gn = 0. (5.35)

We already know the general solution to these equations, since they are precisely what we solved in
eq. (4.25). Indeed, this procedure is exactly our mixed position-momentum space trick of squaring
the Dirac operator into a scalar operator acting on each Weyl subspace, i.e. decoupling the χ and
ψ. Explicitly, the solutions (before imposing boundary conditions) are

fn(z) = z5/2
(
AnJc+1/2(mnz) + BnYc+1/2(mnz)

)
(5.36)

gn(z) = z5/2
(
AnJc−1/2(mnz) + BnYc−1/2(mnz)

)
, (5.37)

where we used the bulk equations of motion to set the coefficients of each term to be the same
betwee the fn and gn functions. The An and Bn are ultimately determined by the boundary
conditions and imposing canonical normalization for each mode, as we did for the zero-mode.

6 Calculation of Penguins

We now discuss the practical calculation of penguin-diagrams in this warped extra dimension. We
shall focus here on the technical calculation. A discussion of the finiteness of the penguin is left
for our main paper. For concreteness, we will consider the leptonic penguin12 µ → eγ.

12Purists might argue that these diagrams are not ‘real’ penguins because they don’t have any ‘feet.’ The essence

of the penguin diagram, however, is that it is a loop-mediated flavor changing neutral current that can occur on-
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µ e

γ

(a) Vertex correction

µ e

γ

(b) Muon correction

µ e

γ

(c) Electron correction

Figure 1: Higgs-mediated loops contributing to µ → eγ. Explicit mass insertions are suppressed.

6.1 Gauge-Invariant Amplitude

We now pause for a morality play regarding the kinds of terms that contribute to the physical
amplitude. Consider the scalar contribution to the Standard Model process, illustrated in Fig. 1.
The external leg corrections are linearly divergent while the 1PI diagram is log divergent. Naively
one has to worry about regularizing these diagrams and this becomes an ordeal. However, we
know that this process is finite. (See, for example, the heuristic arguments in our paper.) The
divergences conspire to cancel each other exactly. This can be seen from the Ward identity which
tells us that replacing the external photon polarization by its momentum causes the amplitude to
vanish, qµMµ = 0. This means that the amplitude can be written in the form

Mµ = a u [pµ + (p + q)µ − (mµ + me)γ
µ] u + b qµ uγµu + c q2uu, (6.1)

where a, b, c are coefficients with the appropriate dimensions. This satisfies the Ward identity
since the a term vanishes upon contraction with q: umµ/q = u /p/q = u p ·q, and similarly with me u.
The b and c terms also vanish upon contraction with qµ since q2 = 0 on shell; these terms don’t
contribute in the physical amplitude since q · ǫ = 0. Thus we are left with a physical amplitude of
the form

Mµ = a u [pµ + (p + q)µ − (mµ + me)γ
µ] u. (6.2)

We can now massage this into a gauge invariant tensor operator,

Mµ = a u
[
pµ + (p + q)µ − /pγ

µ − γµ
(

/p + /q
)]

u (6.3)

= a u

[

pµ + (p + q)µ − 1

2
/pγ

µ − 1

2
/pγ

µ − 1

2
γµ

(

/p + /q
)
− 1

2
γµ

(

/p + /q
)
]

u (6.4)

= a u

[

pµ + (p + q)µ − pµ +
1

2
γµ

/p − 1

2
/pγ

µ − (p + q)µ +
1

2

(

/p + /q
)
γµ − 1

2
γµ

(

/p + /q
)
]

u (6.5)

= a u
1

2

[

/q, γ
µ
]
u. (6.6)

This is now manifestly in the form of a gauge-invariant term

M = ǫµMµ = a uσµνuFµν . (6.7)

shell due to the radiation of a boson. Whether or not that boson pair produces (hence forming the ‘feet’ of the
penguin) is irrelevant to the point that the penguin is the leading order contribution to neutral-current flavor
violation. For those who are still perturbed, note that there is no ‘official’ definition of the penguin diagram. The
original reference is Ellis et al, [18]. For more background on the etymology of the term, see, for example, the
memorable quote by John Ellis in Shifman’s ITEP lectures [19].

23



Let us now note that the vector terms that contributed to this amplitude are finite and proportional
to the external fermion masses. In this simple example we see that the only contribution to the
physical amplitude comes from the term proportional to pµ. In particular, the vector terms
that one obtains from evaluating all three diagrams in Fig. 1 can either be converted into terms
proportional to the mass of the external fermions (which reduces the overall degree of divergence)
or must otherwise cancel (these include the terms containing divergences). Our general strategy,
then, will be to identify the a coefficient as the pµ term after using the Clifford algebra and the
external spinor equations of motion. This allows us to directly write the finite physical amplitude
without worrying about regularization of potentially divergent terms that ultimately cancel.

Let us be clear on this: the amplitude is composed of several terms. As written they all start out
proportional to γµ from the photon coupling. These terms each contain additional Dirac structure
such as /p and all of our favorite friends. We can massage these terms using the Clifford algebra
to (anti-)commute /p past a γµ. The anticommutator term gives us a pµ, which will contribute to
the physical amplitude. The game we play is thus:

1. Simplify the amplitude’s Dirac structure as much as possible.

2. Use the equations of motion to get rid of /p and (/p + /q) terms when they’re next to the
appropriate external spinor.

3. One will be left with terms like u(p+q)/pγµu(p) which one cannot use the equations of motion
to simplify. Now use the Clifford algebra to anticommute the slashed-momentum across the
γµ. This allows one to use the equations of motion, but one also gets a leftover term of the
form pµu(p + q)u(p). This is precisely the term that we’re interested in.

6.2 Operators

Now let us pause and note that it is particularly useful to think about the contributions to
this process in terms of effective operators. This means that we write down an effective

Lagrangian which encodes 1PI loops and allows us to write down tree-level ‘skeleton diagrams’
for µ → eγ. This still requires us to calculate the same loop diagrams as we would otherwise, but
we will see that combined with the analysis of the form of the amplitude above, this will allow us
to identify the bare minimum that we have to calculate13. The effective operators are constrained
by chirality and gauge invariance. For example, the leading order operator takes the form

akℓ
e5

16π2
H · Liσ

µν(Y5iky
†
5kℓy5ℓj)EjFµν . (6.8)

The indices on the coefficient akℓ refer to the flavor structure of internal propagators. This is just
the 5D operator that gives a tree level µ → eγ coupling with no additional insertions. If we set the
fields to their zero modes, then the coefficient a here is exactly a contribution to the coefficient a
in the amplitude in Eq. (6.7). In fact, if we only consider this operator, then both as are exactly
the same. It’s no coincidence that this effective operator and the form of the amplitude take

13The moral is that one shouldn’t confuse the effective operators from the amplitude. Indeed, there can be an
operator that takes the exact form of the amplitude and if this is the only such operator, then it is equal to the
amplitude. However, in general there can be other operators that can be combined to contribute to the amplitude.
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the same form, the effective operator is just the most trivial contribution to the amplitude and
they are both constrained by gauge invariance.

After plugging in the wave functions for the fermion and photon zero modes, carefully including
all warp factors, and matching the gauge coupling we find the relevant 4D operator for the zero
modes contributing to µ → eγ to be given by

akℓR
′2 e

16π2

v√
2

(

fLi
YikY

†
kℓYℓjf−Ej

)

L
(0)

i σµνE
(0)
j F (0)

µν + h.c. (6.9)

in the gauge eigenbasis, i.e. before diagonalizing the Yukawa matrix. Since Y is anarchic we
simplify the indices by writing

akℓYikY
†
kℓYℓj = aY 3

∗ (6.10)

where we’ve used the anarchic limit14 and the observation that the akℓ do not vary strongly for
different values of k and ℓ. This observation can be checked explicitly, as can be found in the
handy plot in our paper. We can go to the standard 4D mass eigenbesis using the bi-unitary
transformation

y = ULy(diag)U †
R, (6.11)

where the magnitudes of the elements of the unitary matrices UL,R are set by the hierarchies in
the flavor constants

(UL)ij ∼
fLi

fLj

for fLi
< fLj

. (6.12)

The traditional parameterization for the µ → eγ amplitude is written as

−iCL,R

2mµ

uL,R(p) σµν uR,L(p + q)Fµν (6.13)

where uL,R are the left and right handed Dirac spinors for the µ. Comparing (6.9) with (6.13) and
using the magnitudes for the off-diagonal terms in the UL rotation matrix for the anarchic case in
(6.12), we find that in the mass eigeinbasis

CL = aR′2 e

16π2
Y 3
∗

v√
2
2mµfL2

f−E1
,

CR = aR′2 e

16π2
Y 3
∗

v√
2
2mµfL1

f−E2
. (6.14)

14In particular, if W = Y/Y ∗ is a matrix containing only elements ±1 with randomly assigned signs, then

(WW †W )ij =

9∑

i=1

Rand(+,−).

This must sum to an odd integer. It is a simple exercise in elementary probability to show that the value is ±1 for
just under half of the possible random distributions.
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(a) External mass insertion (b) Bulk W loop (c) “Muffin” diagram

Figure 2: Higher order diagrams that incorporate contributions from other operators.

The actual µ → eγ branching fraction is given by

Br(µ → eγ) =
12π2

(GF m2
µ)2

(C2
L + C2

R) < 1.2 · 10−11. (6.15)

While the generic expression of Br(µ → eγ) depends on the individual wave functions fL,−E, since
the product CLCR is fixed by the physical lepton masses and C2

L + C2
R ≥ 2CLCR one can put a

lower bound on the branching ratio

Br(µ → eγ) ≥ 3a2 α

4π

(
R′2

GF

)2
me

mµ

Y 4
∗ . (6.16)

If we want the lightest gauge KK modes to be accessible at the LHC, since mKK ∼ 2.4/R′, we
need to choose 1/R′ ∼ 1 − 1.51/TeV. Then for a given value of a we will get a generic upper
bound on Y∗

Y∗ ≤ 0.18 a− 1

2 . (6.17)

6.3 Other operators

One might consider more operators that could contribute. For example, one might consider the
brane-localized kinetic terms

bL
ij

16π2
L̄lD(y†y)ijLj +

bE
ij

16π2
ĒiD(yy†)ijEj, (6.18)

or the the higher-order W -loop induced operators

cL
ij

16π2
L̄i /DD2Lj +

cE
ij

16π2
Ēi /DD2Ej. (6.19)

These come from diagrams such as those in Fig. 2. More generally, one can build additional
gauge-invariant 5D bulk operators from powers of the covariant derivative,

b

16π2
Li /D

2n
Ej

c

16π2
Li /D

2n+1
Lj,
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but these do not contribute at leading-loop order since one can apply the equations of motion to
convert these operators into contributions to kinetic term, i.e. wavefunction renormalization15. In
other words, /D

n → /D. In particular, this means that one may ignore diagrams with a bulk loop
and an external chirality-flipping mass insertion on the IR brane, e.g. W loop diagrams.

6.4 R′ dependence

Let’s discuss how to write out an effective operator more concretely. We’ll focus on the a operator.
We would like to pull out all dimensionful factors and write everything in terms of a dimensionless
coefficient. We would also like to translate this from a 5D operator into an operator for zero mode
fermions. We start with the ‘full’ form of the 5D operator (note the covariant δ function to force
the operator to be IR brane-localized):

Oa = a
√

Gg5HLσµν
(
yy†y

)
Eδ(

√

G55(z − R′))Fµν . (6.20)

For simplicity we’re dropping flavor indices. Let’s check dimensions:

[g5] = −1

2
(6.21)

[H] = 1 (6.22)

[Ψ] = 2 (6.23)

[Fµν ] =
5

2
(6.24)

[δ(z − R)] = 1 (6.25)

[y] = −1. (6.26)

All other terms are dimensionless so that upon including a d5x this term is dimensionless in the
effective action and thus the coefficient a is indeed dimensionless. The 4D operator is dimension
6, so when we write out an operator for (4D) zero modes, we expect a coefficient of dimension
-2. Since this operator is IR brane localized, the intuitive choice of scale is R′ (or, if the operator
were to have turned out to be UV sensitive, it would have been 1/Λ2.) We can now insert our 4D

15It is a nontrivial fact often used in effective field theory that one may use the equations of motion to relate
quantum operators. This has been explained pedagogically by Politzer in Section 12 of [20] and Weinberg in
Section 7.7 of [21]. We thank Witek Skiba for explaining this to us.
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µ e

γ

(a) Mass insertion before γ

µ e

γ

(b) Mass insertion after γ

Figure 3: 5D one-loop diagrams contributing to the operator (6.34). The horizontal dashed line
represents a brane-localized Higgs and the dot represents a Higgs vev insertion.

fields and check explicit powers of R:

√
Gδ(

√

G55(z − R′)) =

(
R

R′

)4

δ(z − R′) (6.27)

g5Fµν = eF (0)
µν (6.28)

〈H〉 =
v√
2

(
R′

R

)

(6.29)

L(x, z)(· · · )E(x, z) =
1

R′

(
R′

R

)4

fLfEχ(0)(x)(· · · )ψ(0)(x) (6.30)

yy†y = R3Y Y †Y (6.31)

σµν =

(
R′

R

)2

σµν
flat. (6.32)

The result is

aR′2 e

16π2

v√
2
L̄ifLi

(Y Y †Y )ijf−Ej
σµνEjFµν + h.c. (6.33)

Of course we could have just guessed this form from dimensional analysis and noting that the
operator is localized on the IR brane so must depend on the warped down scale (1/R′).

6.5 Weyl Penguins

In terms of Weyl spinors, the leading order (in mass insertion) operator contributing to the µ → eγ
Weyl penguin16 is

akℓ
g5

16π2
H · Liσ

µν(yiky
†
kℓyℓj)EjFµν . (6.34)

As discussed in our main paper, this is the only operator to contribute by gauge invariance. The
corresponding diagrams contributing to this operator are shown in fig. 3.

16We only use this rather meaningless phrase to make fun of our colleague, D.C., who dishonors his German
heritage by pronouncing Hermann Weyl’s last name as ‘whale.’
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6.6 Feynman Rules, Schwinger Drools

E L

H

=

(
R

R′

)3

Y5 ≡ Y

f f

Aµ

=

(
R

z

)4

eγµ

The first of these rules expresses how the effective Yukawa is warped down by a factor of (R/R′)3 by
virtue of the Higgs being localized on the IR brane. The exact factor is determined by canonically
normalizing the Higgs to be a 4D field. In detail,

S =

∫

d4x

∫ R′

R

dz

(
R

z

)5

H5 · LY5E
δ(z − R′)

(R/z)
+ h.c + · · · , (6.35)

where we recall that the covariant δ function is δ(
√

g55z) = δ(z)/
√

g55. We should now normalize
the kinetic term and write the brane-localized 5D Higgs field H5 explicitly as a fully 4D (e.g.
dimension one) field H. Note the Higgs kinetic term takes the form

S =

∫

d4x

∫

dz

(
R

z

)5

(DMH5)(DNH5)g
MN δ(z − R′)

(R/z)
+ · · · (6.36)

=

∫

d4x

(
R

R′

)2

(DµH5)(D
µH5) + · · · . (6.37)

Thus in order to canonically normalize with respect to a 4D Higgs, we ought to define

H =
R

R′
H5. (6.38)

Finally, we may rewrite the 5D Yukawa couplings in terms of these manifestly 4D Higgs fields as

S =

∫

d4x

(
R

R′

)3

H · LY5E + h.c + · · · . (6.39)

In order to relate these to the 4D Yukawa couplings between the zero-mode fermions, one may
KK-decompose the 5D spinors and consider the profile of the zero mode. For example, inserting
eqs. (5.22) and (5.31), for example, the Yukawa couplings of the zero modes can be written as

S =

∫

d4x

(
R

R′

)3

H ·
(

1√
R′

(
R′

R

)2

fcL
χ0L

)

Y5

(

1√
R′

(
R′

R

)2

f−cR
ψ0E

)

+ h.c + · · · (6.40)

=

∫

d4x H · χ0L

(
1

R
fcL

Y5f−cR

)

ψ0E + h.c + · · · , (6.41)

and thus we may identify

ySM =
1

R
fcL

Y5f−cR
. (6.42)
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Next we discuss the couplings of the fermions to gauge bosons. The kinetic term takes the form

∫

d4x

∫

dz

(
R

z

)4

ΨΓMDMΨ, (6.43)

where DM = ∂M + g5AM . If we are interested in the coupling to a zero-mode external photon,
as in µ → eγ, then we can just read off the result. This is because we know that the photon
doesn’t participate in electroweak symmetry breaking and so its zero mode profile is flat (i.e.
z-independent). Thus one only has to keep track of powers of R and R′. A handy mnemonic,
however, is to recall that the z integral for this coupling must include the 4D coupling so that

∫

dz g5A
(0)(x, z) = eA(0)(x). (6.44)

Thus the relevant Feynman rule is just the 4D coupling e times the appropriate power of the warp
factor. Using this Feynman rule we are implicitly writing the photon as a 4D zero mode field.
More generally, for a bulk gauge field (e.g. for internal W diagrams) the coupling is the same as
above but with the 4D coupling replaced by the 5D coupling whose value is

(g5)
2 = R(g4)

2, (6.45)

which is fixed by considering the zero mode coupling.

6.7 Amplitude

We now write out the amplitude for each diagram, M = ǫµ

(

Mµ
(a) + Mµ

(b)

)

. For the first diagram

we have

Mµ
(a) =

∫

d̄ 4k

∫ R′

R

dz uLi
(p′) Yik ∆Ek

(k′, R′, z) e

(
R

z

)4

γµ ∆Ek
(k, z, R′)

v√
2
Y †

kl ∆Lℓ
(k,R′, R′) Yℓj uEj

(p) ∆H(k − p). (6.46)

The external state spinors u and u are implicitly 5D, i.e. we mean u = u4Df0(R
′). We can separate

this out to make it more human-readable,

Mµ
(a) =

ev√
2
YikY

†
kℓYℓj

∫

d̄ 4k

∫ R′

R

dz

(
R

z

)4

uLi
(p′)

[

Gµ
(a)

]

kℓ
uEj

(p) ∆H(k − p), (6.47)

where we’ve defined the ‘gamma matrix structure,’
[

Gµ
(a)

]

kℓ
= ∆Ek

(k′, R′, z) γµ ∆Ek
(k, z, R′) ∆Lℓ

(k,R′, R′). (6.48)

Similarly for the second diagram,

Mµ
(b) =

ev√
2
YikY

†
kℓYℓj

∫

d̄ 4k

∫ R′

R

dz

(
R

z

)4

uLi
(p′)

[

Gµ
(b)

]

kℓ
uEj

(p) ∆H(k − p), (6.49)
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with the corresponding gamma matrix structure

[

Gµ
(b)

]

kℓ
= ∆Ek

(k′, R′, R′) ∆Lℓ
(k,R′, z) γµ ∆Lℓ

(k, z, R′). (6.50)

We will summarize the common prefactor as

Aikℓj =
ev√

2
YikY

†
kℓYℓj. (6.51)

6.8 Simplifying to Weyl Amplitudes

We can simplify the Dirac structure by recalling the structure of the fermion propagators 2 × 2
Weyl basis, eqs. (4.37-4.38). For example,

Gµ
(a) = ∆Ek

(k′, R′, z) γµ ∆Ek
(k, z, R′) ∆Lℓ

(k,R′, R′) (6.52)

=

(
0 0

∆21
Ek

∆22
Ek

) (
σµ

σµ

)(
∆11

Ek
0

∆21
Ek

0

)(
0 ∆12

Lℓ

0 0

)

(6.53)

=

(
0 0
0 G22

(a)

)

, (6.54)

where we have now packaged the Dirac structure into Weyl structure,

G22
(a) = ∆22

Ek
(k′, R′, z) σµ ∆11

Ek
(k, z, R′) ∆12

Lℓ
(k,R′, R′)

+ ∆21
Ek

(k′, R′, z) σµ ∆21
Ek

(k, z, R′) ∆12
Lℓ

(k,R′, R′). (6.55)

Does this make sense? As a sanity check, we check that the amplitude goes as

Mµ
(a) ∼

(
ψ χ

)
(

0 0
0 G22

(a)

)(
χ

ψ

)

∼ χG22
(a) ψ ∼ LG22

(a) E, (6.56)

which is indeed the correct form we wrote in eq. (6.34).
Let us do the same thing for Gµ

(b),

Gµ
(b) = ∆Ek

(k′, R′, R′) ∆Lℓ
(k,R′, z) γµ ∆Lℓ

(k, z, R′) (6.57)

=

(
0 0

∆21
Ek

0

)(
∆11

Lℓ
∆12

Lℓ

0 0

)(
σµ

σµ

)(
0 ∆12

Lℓ

0 ∆22
Lℓ

)

(6.58)

=

(
0 0
0 G22

(b)

)

, (6.59)

where we have again packaged the Dirac structure into Weyl structure,

G22
(b) = ∆21

Ek
(k′, R′, R′) ∆11

Lℓ
(k′, R′, z) σµ ∆22

Lℓ
(k, z, R′)

+ ∆21
Ek

(k′, R′, R′) ∆12
Lℓ

(k′, R′, z) σµ ∆12
Lℓ

(k, z, R′). (6.60)
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6.9 Separating the Scalar Parts

We will now simplify the G22 functions. Recalling eq. (4.31),

∆ = D∗

(
F−

F+

)

=

(
∂5 − 2

z
− c

z
/k

/k 2
z
− ∂5 − c

z

)(
F−

F+

)

≡
(

D−F− /kF+

/kF− D+F+

)

. (6.61)

Now we can write out the G22s as (using slightly modified notation for the F s),

G22
(a) =

[
D+F+>

Ek
(k′, R′, z)

] [
D−F−<

Ek
(k, z, R′)

] [
F+

Lℓ
(k,R′, R′)

]
σµ/k

+
[
F−>

Ek
(k′, R′, z)

] [
F−<

Ek
(k, z, R′)

] [
F+

Lℓ
(k,R′, R′)

]
/k′σµ/k/k (6.62)

G22
(b) =

[
F−

Ek
(k′, R′, R′)

] [
D−F−>

Lℓ
(k′, R′, z)

] [
D+F+<

Lℓ
(k, z, R′)

]
/kσµ

+
[
F−

Ek
(k′, R′, R′)

] [
F+>

Lℓ
(k′, R′, z)

] [
F+<

Lℓ
(k, z, R′)

]
/k′ /k′σµ/k. (6.63)

Recalling the Clifford algebra for Pauli matrices,

/p/p = /p/p = p2
12×2. (6.64)

Let us thus write the G22s in terms of purely scalar functions of the F s,

G22
(a) = g(a)σ

µ/k + ĝ(a)k
2 /k′σµ (6.65)

G22
(b) = g(b)

/k′σµ + ĝb(k
′)2σµ/k, (6.66)

where we recall that k2 = χ2
k and (k′)2 = χ2

k+q. To write these in a more useful form, we can

absorb these into the ĝ and ĝ functions by defining g(a) = ĝ(a)k
2 and g(b) = ĝ(b)(k

′)2,

G22
(a) = g(a)σ

µ/k + g(a)
/k′σµ (6.67)

G22
(b) = g(b)

/k′σµ + g(b)σ
µ/k. (6.68)

For concreteness let us write out our shorthand notation explicitly,

g(a) =
[
D+F+>

Ek
(k′, R′, z)

] [
D−F−<

Ek
(k, z, R′)

] [
F+

Lℓ
(k,R′, R′)

]
(6.69)

g(a) = χ2
k

[
F−>

Ek
(k′, R′, z)

] [
F−<

Ek
(k, z, R′)

] [
F+

Lℓ
(k,R′, R′)

]
(6.70)

g(b) =
[
F−

Ek
(k′, R′, R′)

] [
D−F−>

Lℓ
(k′, R′, z)

] [
D+F+<

Lℓ
(k, z, R′)

]
(6.71)

g(b) = (χk+q)
2
[
F−

Ek
(k′, R′, R′)

] [
F+>

Lℓ
(k′, R′, z)

] [
F+<

Lℓ
(k, z, R′)

]
(6.72)

To really summarize our progress so far, let’s write out the amplitudes for each diagram again,

Mµ
(a) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

uLi

(
0 0

0 g(a)σ
µ/k + g(a)

/k′σµ

)

uEj
∆H (6.73)

Mµ
(b) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

uLi

(
0 0

0 g(b)
/k′σµ + g(a)σ

µ/k

)

uEj
∆H , (6.74)
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where we’ve dropped arguments and written the overall constants as Aikℓj. An alternate way to
write this amplitude is to promote the Pauli structure back into Dirac structure and impose a
projection operator,

Mµ
(a) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

uLi

(
g(a)γ

µ/k + g(a) /k
′γµ

)
P,uEj

∆H (6.75)

Mµ
(b) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

uLi

(
g(b)γ

µ/k + g(b) /k
′γµ

)
PR uEj

∆H . (6.76)

Even more succinctly, we can write these amplitudes completely in terms of Weyl spinors,

Mµ
(a) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

χLi(p
′)

[
H(a) + H(a)

]
ψEj

(p) (6.77)

Mµ
(b) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

χLi(p
′)

[
H(b) + H(b)

]
ψEj

(p) (6.78)

where the Weyl structure takes the form

H(a) = g(a)(χk+q) ∆H(k − p) σµ/k (6.79)

H(a) = g(a)(χk+q) ∆H(k − p)
(

/k + /q
)

σµ (6.80)

H(b) = g(b)(χk+q) ∆H(k − p)
(

/k + /q
)

σµ (6.81)

H(b) = g(b)(χk+q) ∆H(k − p) σµ/k. (6.82)

(6.83)

6.10 Taylor Expansion in p and q

While these manipulations greatly simplify the amplitude into compartmentalized pieces, it is
still quite a mess to evaluate even numerically. In particular, the dependence on the integration
variable k is not manifestly even so that we cannot do our usual 4D trick of doing a spherical
integral.

The next step is to expand these expressions in p and q, the so-called ‘Yuhsin’s q-expansion17’.
As explained in our main paper, the general strategy is to use the equations of motion on the
external spinor wavefunctions,

ue(p
′)/p′ = meue(p

′) (6.84)

/puµ(p) = mµu(p). (6.85)

We use p′ ≡ p + q to convert all of our momenta into the integration variable k and the external
fermion momenta p, p′. By using the Clifford algebra,

/pσ
µ = −σµ/p + 2pµ (6.86)

/pσµ = −σµ
/p + 2pµ, (6.87)

17Actually, only the authors call it that. And even then, only one of the authors calls it that since it would be
silly for Yuhsin to refer to himself in the third person.
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to commute the various /p and /p′ factors toward their appropriate external state spinors we are
left over with terms which go as pµ and p′µ. The coefficient of these terms completely determines
the µ → eγ amplitude. For concreteness we only need to determine the pµ coefficient.

In order to do this we want to pull out the q-dependence of the various terms in our expressions.
These all come from k′ = k + q. In particular, they come from the factor

χk′ =
√

k2 + 2k · q. (6.88)

We can thus pull out all of the qs by Taylor expanding in the q. Note that this will generically
give us factors of (k · q). Upon doing the loop integral, d̄ 4k, however, these turn into contractions
among the qs and the γµ. For example, the familiar symmetry relation

kαkβ =
1

4
ηαβk2 (6.89)

leads to manipulations such as (k · q)/k = 1
4
k2/q. (Note that we’ve used the Minkowski metric ηµν

for these purely 4D loops.) By the on-shellness of the external photon we see that this expansion
terminates since q2 = 0. The relevant formula to note in this expansion is

∂g(χk′ , · · · )
∂qµ

=
∂g

∂χk′

(χk, · · · ) ·
∂χk′

∂qµ
(6.90)

=
∂g

∂χk′

(χk, · · · )
kµ

χk

. (6.91)

Thus we can expand our g functions as

g(χk′) = g(χk) +
k · q
χk

∂g

χk′

(χk) + · · · , (6.92)

where the higher order terms are naively of order q2 = 0.
We also need to expand the Higgs propagator in terms of the muon momentum. Writing the

Higgs mass as M ,

∆H(k − p) =
1

(k − p)2 − M2
(6.93)

= ∆H(k) − 2∆′
H(k)k · p + O(m2

µ) (6.94)

= ∆H(k)
[
1 − 2(k · p)∆H(k) + O(m2

µ)
]
, (6.95)

where we can safely drop the terms of order m2
µ since it is small compared to all other scales

in the problem. Note that now upon integration of d̄ 4k we are left with factors pµ which end
up contracting with the γµ and the factors of qµ from the q-expansion. Thus the q-expansion
terminates for a fixed order expansion in pµ, namely it terminates after the term proportional to
(p · q)n/q since further terms are proportional to q2.

After doing these expansions we are left with an amplitude whose k-integral is manifestly even,
i.e. all dependence on k can be written in terms of χk =

√
k2. This can now be done at any order

in m2
µ. Practically we are only interested in the leading order term, dropping all terms of order
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m2
µ. Recall that this also drops terms of order O(p · q), since such a term is proportional to

mµEγ ∼ m2
µ. Practically this means that we only have to expand each of p and q to first order.

Now let us start expanding the relevant terms, dropping those that are odd in the integration
variable k.

H(a) =

(

g(a) + g′
(a)

k · q
χk

)
(
∆H + 2k · p∆2

H

)
σµ/k (6.96)

=

(

2(k · p)g(a)∆
2
H + g′

(a)

k · q
χk

∆H

)

σµ/k (6.97)

=
1

2
k2g(a)∆

2
Hσµ

/p +
1

4
g′

(a)∆Hσµ
/q, (6.98)

where all terms on the right-hand side are evaluated at k′ = k and we’ve dropped terms of order
m2

µ. We proceed similarly for the g(a) term,

H(a) =

(

g(a) + g′
(a)

k · q
χk

)
(
∆H + 2(k · p)∆2

H

) (

/k + /q
)

σµ (6.99)

=

(

2(k · p)g(a)∆
2
H +

k · q
χk

g′
(a)∆H

)

/kσµ + g(a)∆H/qσµ. (6.100)

Fortunately the g(b) terms have exactly the same structure and can be read off analogously,

H(b) =

(

2(k · p)g(b)∆
2
H +

k · q
χk

g′
(b)∆H

)

/kσµ + g(b)∆H/qσµ (6.101)

H(b) =
1

2
k2g(b)∆

2
Hσµ

/p +
1

4
g′

(b)∆Hσµ
/q. (6.102)

6.11 Identifying the pµ coefficient

We now would like to use the Clifford algebra to use the equations of motion to completely
eliminate all /p and /p′ terms. Upon contraction with the appropriate spinors these become vector
operators proportional to the external fermion masses, which we neglect. Whenever we have to
interchange a /p with a σµ matrix, however, we pick up a desired term proportional to pµ.

Since the (a) and (b) values of the H expressions are completely analogous, it is sufficient just
to look at H(a) and H(a). The (b) values are obtained trivially from (a) → (b). The first term is
given by

H(a) =
1

2
χ2

kg(a)∆
2
Hσµ

/p
︸ ︷︷ ︸

∼mµ

+
1

4
χkg

′
(a)∆Hσµ

(
/p′ − /p

)

︸ ︷︷ ︸

∼2p′µ−me−mµ

, (6.103)

from which we see there are no contributions to the pµ term. The next contribution is

H(a) =
1

2
χ2

kg(a)∆
2
H/pσµ +

1

4
χkg

′
(a)∆H

(
/p′ − /p

)
σµ + g(a)∆H

(
/p′ − /p

)
σµ. (6.104)
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Dropping all of the p′ terms and keeping only the pµ terms upon using the Clifford algebra to
commute /p across σµ, we find that the relevant contribution is

H(a) =

(

χ2
kga∆

2
H − 1

2
χkg

′
(a)∆H − 2g(a)∆H

)

pµ. (6.105)

This is what is left to compute in our integral,

Mµ
(a) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

χLi(p
′) H(a) ψEj

(p) (6.106)

Mµ
(b) = Aikℓj

∫

d̄ 4k

∫

dz

(
R

z

)4

χLi(p
′) H(b) ψEj

(p). (6.107)

7 Performing the Numerical Integration

Now all that’s left to be done is the actual integral. Actual integration is done using Mathematica,
but some steps need to be taken to massage the integral into a Mathematicable form. The first rule
of doing integrals on mathematica is to always use dimensionless intergation variables. Motivated
by the arguments of our Bessel functions, we choose

x ≡ χkz (7.1)

y ≡ χkR
′. (7.2)

The choice to define y with respect to R′ rather than the ‘fundamental’ scale R amounts to
choosing to let Mathematica work with exponentially small numbers rather than exponentially
large ones18. For practical purposes we may measure all of our dimensionful variables in units of
R′ ∼ TeV, i.e. we may set R′ = 1. We remind ourselves of the following expressions,

∂

∂z
=

∂x

∂z

∂

∂x
= χk

∂

∂x
=

y

R′

∂

∂x
;

1

z
=

χk

x
=

y

R′

1

x
. (7.3)

The D±F± expressions defined in Eq. (6.61) take the form

D±F± =

[

±
(

∂

∂z
− 2

z

)

− c

z

]

F± =
y

R′

[

±
(

∂

∂x
− 2

x

)

− c

x

]

F±. (7.4)

It is now straightforward to express the F functions in terms of x and y rather than z and χp.
(Indeed, it turns out to be much nicer to derive the F s in this basis.) One can now plug this
into the g(a) and g(b) functions in our amplitude. Refer to our Mathematica file for an explicit
calculation. There are a few important remarks.

• Note that x and y both have k dependence. The ∂/∂k′ in the amplitude must be handled
carefully to make sure one is taking the appropriate derivative on the appropriate variables.

18It appears that Mathematica prefers working with very small numbers rather than very big ones, which it tends
to interpret as divergences
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• Variables should be Wick-rotated. This amounts to taking x, y → ixE, iyE.

• Do the x integral first. We found that it can be useful to plot the subsequent integrand in
y. In particular, one should be able to see that the y integrand approaches zero faster than
1/y2 so that the integral really is finite.

• Don’t forget that

dz d4k = dx
dz

dz
dy

dχk

dy

( y

R′

)

dΩ3

= dx dy dΩ3y
2(R′)−3 = dx dy (2π)y2(R′)−3

• Second, Mathematica doesn’t like very big or very small overall values. It is best to remove
all overall warp factors R/R′ ≡ w ∼ 10−16 from the numerical integration. (There will be
warp factors in the arguments of the Bessel functions that cannot be removed.)

One should check explicitly that all factors of w cancel and that the amplitude’s dimensions are
carried by an overall factor of (R′)2. To see this, we just have to check the w and R′ dependence
of each part of the amplitude:

• Bulk fermion propagator. This goes as (zz′)5/R4, which gives us a dependence of R′/w4.
There are three such propagators, so we get a contribution of (R′)3w−12.

• Yukawa coupling. These go as (R/R′)3Y5, where Y5 = RY4. This gives a dependence of
R′w4. With three Yukawa couplings in the amplitude (don’t forget the Higgs-induced mass
insertion), this contributes a factor of (R′)3w12.

• Gauge coupling. This gives (R/z)4e5 with e5 = Re4. The dependence is thus w5R′.

• External wavefunctions. The wavefunctions for the external zero-mode fermions and
photon come from recalling that

fc ∼
1√
R′

( z

R

)2 ( z

R′

)−c
∣
∣
∣
∣
z=R′

A(0) ∼ 1

R
A

(0)
4 .

A useful mnemonic for the photon and gauge dependence comes from noting that e5A
(0)
5 =

e4A
(0)
4 . Thus the external wavefunctions give an overall factor of (R′)2w5.

• Measure. The integration measure, as written above, gives a factor of (R′)−3.

Multiplying everything together we indeed get an amplitude that is proportional to (R′)2 and with
no additional overall factors of the warp factor w.
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8 Relation to µ → (3)e

The amplitude for µ → eγ provides an upper bound on the RS anarchic Yukawa scale. Agashe,
Blechman, and Petriello showed that the processes µ → 3e and µ → e provide a lower bound on
this scale. This can heuristically be understood in terms of the profile of the gauge bosons.

µ → 3e is mediated by tree-level zero- and KK-mode Z exchange. The flavor changing process
occurs due to the kink in the otherwise-flat Z boson profile near the IR brane with electroweak
symmetry breaking causes a small feature. As we increase the Yukawa couplings, the fermion
zero-mode profiles must move towards the UV brane to maintain the observed mass relations.
This causes them to have a smaller overlap with this region of flavor-changing in the Z profile
and would thus lower the amplitude for µ → 3e. Thus the upper limits on µ → 3e impose lower
limits on the anarchic Yukawa scale.

For a fixed KK gauge boson mass MKK, limits on µ → 3e and µ → e conversion provide
the strongest upper bounds on the anarchic Yukawa scale Y∗. These tree-level processes are
parameterized by 4-Fermi operators generated by Z and Z ′ exchange. The effective Lagrangian
for these lepton flavor violating 4-Fermi operators are traditionally parameterized as [22]

L =
4GF√

2
[g3(ēRγµµR)(ēRγµeR) + g4(ēLγµµL)(ēLγµeL) + g5(ēRγµµR)(ēLγµeL)

+g6(ēLγµµL)(ēRγµeR)] +
GF√

2
ēγµ(v − aγ5)µ

∑

q

q̄γµ(vq − aqγ5)q, (8.1)

where we have only introduced the terms that are non-vanishing in the RS set up, and vq =
T q

3 − 2Qq sin2 θ. The g3,4,5,6 are responsible for the µ → 3e decay, while the v, a are responsible for
µ → e conversion in nuclei. The rates are given by (with the conversion rate normalized to the
muon capture rate):

Br(µ → 3e) = 2(g2
3 + g2

4) + g2
5 + g2

6 ,

Br(µ → e) =
peEeG

2
F F 2

p m3
µα

3Z4
eff

2π2ZΓcapt

Q2
N2(v2 + a2), (8.2)

where the parameters for the conversion depend on the nucleus and are calculated in the Feinberg-
Weinberg approximation [23]. The most sensitive experiment is for 48

22Ti, for which Ee ∼ pe ∼
mµ, Fp ∼ 0.55, Zeff ∼ 17.61, Γcapt ∼ 2.6 · 106 1

s
, and QN = vu(2Z + N) + vd(2N + Z).

In order to calculate the coefficients in the effective Lagrangian (8.1), we need to calculation
the flavor violating couplings of the lightest neutral gauge bosons in the theory and compute the
relevant tree-level contributions. In the basis of physical KK states all lepton flavor violating
couplings are the consequence of the non-uniformity of the gauge boson wave functions.

µ

e

Z, Z ′, γ′

nucleon or ee
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8.1 The effect of the SM Z boson

Let us first consider the effect of the ordinary Z boson, whose wave function is approximately.

h(0)(z) =
1

√

R log R′

R

[

1 +
M2

Z

4

(

z2 − 2z2 log
z

R

)]

.

Here we use the approximation (2.19) in Csáki, Erlich, and Terning [24] with a prefactor for
canonical normalization and dropping some terms of O(M2

ZR′2) which came from a silly normal-
ization used in their paper. The generic solution for the nth KK gauge boson wavefunction can be
found by following the same techniques that we used to solve the scalar differential equation. By
prodigal use of boundary conditions one can include the effects of electroweak symmetry breaking.
For examples see [24] and [15]. The solution is

h(n) = N z
[

Y0

(

M
(n)
KKR

)

J1

(

M
(n)
KKz

)

− J0

(

M
(n)
KKR

)

Y1

(

M
(n)
KKz

)]

, (8.3)

up to some normalization N that is determined by the boundary conditions.For the zero mode
we can Taylor expand with respect to the small arguments of the Bessel functions,

h(0)(z) = N
[

1 +
M2

Z

4

(

z2 − 2z2 log
z

R

)]

. (8.4)

We want to determine N from the canonical normalization of the 4D Lagrangian. Let’s look at
the kinetic term:

∫

d4x

∫ R′

R

dz

(
R

z

)5

F
(5)
MNF

(5)
PQgMP gNQ =

∫

d4x

∫ R′

R

dz
R

z
F

(5)
MNF

(5)
PQηMP ηNQ (8.5)

=

∫

d4x

∫ R′

R

dz
R

z
F (0)

µν F (0)µν
(
h(0)(z)

)2
+ · · · (8.6)

We can ignore the z-dependent part of h(0)(z) since it is small (proportional to (MZz)2) and
normalize with respect to the leading term, N . The integral gives an overall prefactor of

N 2R log
R′

R
, (8.7)

so that the canonical normalization is

N =
1

√

R log R′/R
. (8.8)

We would like to determine the flavor-changing coupling of the Z, i.e. the nonuniversal cou-
pling. Recall that the profile of a zero-mode fermion with bulk mass |c| is given by Eq. (5.22),

Ψ(0)
c (x, z) =

1√
R′

( z

R

)2 ( z

R′

)−c

fc Ψ(0)(x), (8.9)
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where

fc =

√

1 − 2c

1 − (R/R′)1−2c
. (8.10)

Left-handed modes have c > 0 and right-handed modes have c < 0. The effective 4D coupling is
determined by calculating the overlap of the 5D wavefunction profiles,

gZff
4D Z(0)

µ Ψ
(0)

c γµΨ(0)
c =

∫

dz

(
R

z

)5

gZff
5 ZM(x, z)Ψ

(0)

c (x, z)ΓMΨ(0)
c (x, z) − · · · , (8.11)

where we’ve written gZff to mean the coupling constant with the quantum numbers of the fermions
incorporated. For example,

gZff5 = g5cQT3 − g′
5sQY. (8.12)

Note that we are still in the 5D basis where the cs are diagonal so that the fermions here are
assumed to be of the same flavor (in this basis) and have the same c. In the physical KK basis
(the 4D mass eigenbasis) we will rotate the fermions and this will lead to flavor-changing neutral
currents. Writing out the overlap integral explicitly we get

gZff
5

√

R log R′/R

∫ R′

R

dz

(
R

z

)4 [
1√
R

( z

R

)2 ( z

R′

)−c

fc

]2 [

1 +
MZ

4
(· · · )

]

Z(0)
µ χ(0)

c σµχ(0)
c . (8.13)

The (· · · ) are the terms in the Z profile,

(· · · ) = 1 +
MZ

4

(

z2 − 2z2 log
z

R

)

. (8.14)

The leading term is the universal part of the Z profile while the MZ/4 term has a non-trivial
z-dependence and is the non-universal part. It is the latter that will contribute to flavor-changing
when we rotate to the KK mass basis.

As a warm-up, let’s remind ourselves of the universal part that gives us the relation of the
Standard Model coupling to the 5D parameters. This is given by

gZff
SM = gZff

5

∫ R′

R

dz
f 2

c (R′)2c

R′
√

R log R′/R
z−2c (8.15)

=
gZff
5 f 2

c
√

R log R′/R

(

1 −
(

R

R′

)1−2c
)

1

1 − 2c
(8.16)

=
gZff
5

√

R log R′/R
. (8.17)

This is an important result to have handy.
Moving on let’s consider the non-universal part. The non-universal coupling is

gZff
NU =

g5f
2
c

R′
√

R log R′/R

MZ

4

∫ R′

R

dz
( z

R′

)−2c

z2
(

1 − 2 log
z

R

)

. (8.18)
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Let’s change variables to y = z/R and perform the relevant integral... analytically! Yes, we’re
going to be calculus studs19. The integral is

(
R

R′

)−2c ∫ R′/R

1

Rdy y−2c(Ry)2(1 − 2 log y) = R3

(
R

R′

)−2c ∫ R′/R

1

dy
(
y2−2c − 2y2−2c log y

)
.

The first term is easy:

∫ R′/R

1

dy y2−2c =
1

3 − 2c

[
y3−2c

]R′/R

1
. (8.19)

The second term can be computed using integration by parts. The trick is to use

∫

dy ya log y =
1

a + 1
ya+1 log y −

∫

dy
1

a + 1
ya. (8.20)

Thus

−2

∫ R′/R

1

dy y2−2c log y = − 2

3 − 2c

[
y4−2c

]R′/R

1
+ 2

∫

dy
3 − 2c

y

2−2c

(8.21)

= − 2

3 − 2c

[
y4−2c

]R′/R

1
+

2

(3 − 2c)2

[
y3−2c

]R′/R

1
. (8.22)

Plugging everything in carefully, we get

∫ R′

R

dz
( z

R′

)−2c

z2
(

1 − 2 log
z

R

)

= −R3

(
R

R′

)−2c
2

3 − 2c

(
R′

R

)3−2c

log
R′

R

+ R3

(
R

R′

)−2c
5 − 2c

(3 − 2c)2

(

(R′/R)
3−2c − 1

)

. (8.23)

The second line is subleading in (R′/R) so that we can drop it. Though a slightly better approx-
imation would include the (R′/R)3−2c term since this is only suppressed relative to the leading
term by log R′/R ≈ 37. Simplifying everything, we get

gZff
NU = −

(

gZff
5

√

R log R′/R

)

f 2
c

(MZR′)2

2(3 − 2c)
log

R′

R
(8.24)

= −gZff
SM f 2

c

(MZR′)2

2(3 − 2c)
log

R′

R
. (8.25)

Thus the full coupling of the Z to fermions, including both the universal and non-universal parts
is

gZff
4D = gZff

SM

(

1 − (MZR′)2 log R′/R

2(3 − 2c)
f 2

c

)

= gZff
SM (1 − ∆). (8.26)

19We are completely aware that high school freshmen can perform these integrals in their sleep.
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We see that in this c-basis the coupling is diagonal, but the ∆ term is not proportional to the
identity. As explained above, this means when we rotate to the KK mass basis we get off diagonal
terms, i.e. flavor mixing. This is related to the so-called RS-GIM mechanism. In Appendix C
we show that the rotation between flavors i and j go like fi/fj. Thus the effect of a flavor rotation
(e.g. to the KK basis) is

gZµe
4D =

(

U †
LgZff

4D UL

)

µe
(8.27)

≈ fe

fµ

1

2

(
f 2

µ

3 − 2cµ

− f 2
3

3 − ce

)

(MZR′)2 log
R′

R
gZff
SM (8.28)

≈ gZff
SM

(MZR′)2

2(3 − 2cµ) log R′

R
fµfe

≡ gZff
SM ∆µe, (8.29)

where we’ve used the fact that gZff
SM is flavor-independent and we’ve dropped the f 2

e ≪ f 2
µ term.

If you’re unhappy with the rotation here, consider a simple two dimensional case, the matrix
(

f1f1 f1f2

f2f1 f2f2

)

= f 2
1

(
1 θ
θ θ2

)

, (8.30)

where θ = f2/f1. We note that this matrix is diagonalized by
(

1 θ
−θ 1

)(
1 θ
θ θ2

) (
1 −θ
θ 1

)

=

(
1 0
0 1

)

+ O(θ2) (8.31)

If we apply this same rotation to a diagonal matrix that is not proportional to the identity, we get
(

1 θ
−θ 1

)(
1 0
0 θ2

)(
1 −θ
θ 1

)

=

(
a θ(b − a)

θ(b − a) b

)

+ O(θ2). (8.32)

Thus the off-diagonal term is indeed what we wrote above.

8.2 The effect of the Z ′

The Z ′ is the first KK excitation of the Z boson, Z ′ = Z(1). To be more precise, boundary terms
(e.g. EWSB) induce mixing between the KK modes, but to good approximation we can ignore
this mixing.

As before, we need the wavefunction of the Z ′ so that we can calculate the effective 4D coupling
(via the overlap integral). We can start again with our general solution, Eq. (8.3). This gives

h(1)(z) ∝ z [Y0(MKKR)J1(MKKz) − J0(MKKR)Y1(MKKz)] . (8.33)

Ugly! We would desperately like to simplify this. We can’t really Taylor expand the way we did
for the zero mode gauge field because the argument is now no longer manifestly small. More than
that, we are discouraged because it looks like we have to do some work to determine the KK
mass. Fortunately, there’s still some slick moves we can make to avoid any real heavy lifting.

Because we’re considering the KK excitation of the Z, we know that this is a gauge field
whose boundary conditions admit a zero mode. This means that the field has Neumann boundary
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conditions. You can check from the derivative formulae for Bessel functions that the boundary
condition at z = R′ is

Y0(MKKR)J0(MKKR′) = J0(MKKR)Y0(MKKR′), (8.34)

where we remember that MKK ∼ 1/R′ and R ≪ R′ so that MKKR ≈ 0. Now we only need to
remember some properties of J0 and Y0:

1. J0(0) = 1 and J0(x > 0) is under control, i.e. |J0(x > 0)| < 1.

2. Y0(0) = −∞ and Y0(x > y1) is under control where y1 is the first zero, Y0(y1) = 0.

[Work: This would be a good place to have a sketch of these functions.] What does this tell us?
On the left-hand side of Eq. (8.34), Y0(MKKR) is very large (and negative) while on the right-hand
side both terms are O(1) or less. This means that J0(MKKR′) ≈ 0, in other words,

(MKKR′) = x1 ≈ 2.405, (8.35)

where x1 is the first zero of J0. We now have a handy formula for the mass of the KK gauge boson
as a function of the radius of compactification. We hardly had to work for it, too. In fact, this
trick works for all KK modes. The spacing for the KK gauge boson tower is determined by the
spacing of the zeroes of J0. As one goes to larger KK number, this spacing becomes regular since
J0 becomes more sinusoidal. This is exactly what one would expect since at large KK number
we are probing higher energies which become increasingly insensitive to the AdS curvature when
M

(n)
KK ≫ 1/R.
Let’s go back to the 5D wavefunction of the first KK mode. We now know that the coefficient of

the J1(MKKz) term is much larger than that of the Y1(MKKz) term, while the functions themselves
are well behaved20 (i.e. O(1)). Thus we can approximate

h(1)(z) ∝ zJ1(Mkkz). (8.36)

All that’s left to check is the normalization. The procedure follows as before, just canonically
normalize the 4D field. The result is (as you can check21)

h(1)(z) =

√

2

R

z

J1(x1)R′
J1(x1z/R

′). (8.37)

We can now proceed to do the analogous overlap integrals to determine the 4D coupling. The
relevant integral is

gZff
5

∫ R′

R

dz

(
R

z

)4 [
1√
R′

( z

R

)2 ( z

R′

)−c

fc

]2
√

2

R

z

J1(x1)R′
J1

(

x1
z

R′

)

.

20Okay, the Yns also diverge at the origin, but Y0 has the strongest divergence so that Y0(MKKR)J1(MKKz) will
always be larger than in magnitude than J0(MKKR)Y1(MKKz) over the RS domain.

21Plugging into Mathematica:

∫
1

0

dx
1

x

[ √
2x

J1(x1)
J1(x1x)

]2

= 1 − J0(x1)J2(x1)

J1(x1)2
= 1.
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Simplifying and performing a handy change of variable we get

gZff
5 f 2

c

√

1

R

√
2

J1(x1)

∫ 1

0

dx x1−2xJ1(x1x).

For simplicity, let’s define the “flavor function”

γc ≡
√

2

J1(x1)

∫ 1

0

dx x1−2xJ1(x1x) ≈
√

2

J1(x1)

0.7

2(3 − 2c)

(
1 + ec/2

)
≈

√
2

J1(x1)

0.7x1

2(3 − 2c)
. (8.38)

Typically one can further simplify 2(3−2c) ≈ 4, but for ‘real’ calculations one should just perform
the integral. Finally, then, we get the coupling

gZ′eµ
4D = gZff

5

1√
R

fefµγc, (8.39)

where we’ve taken the liberty to rotate into the KK basis as we did above. In terms of the usual
Standard Model coupling, this is

gZ′eµ
4D = gZff

SM

√

log
R′

R
fefµγc. (8.40)

8.3 Matching to the Effective Lagrangian

As a reminder, recall the Z-mediated 4-Fermi effective Lagrangian in the Standard Model (see,
e.g. Peskin p. 709 [25]),

∆L =
g2

2M2
Z

Jµ
ZJZµ =

4GF√
2

(
∑

f

fγ
(
T 3 − s2

W Q
)
f

)

. (8.41)

Recall that

GF√
2

=
g2

8M2
W

=
g2

8c2
W M2

Z

. (8.42)

To set our notation, let us write out the Z coupling to the neutral leptonic current,

∆L = gZµJ
µ
Z (8.43)

=
g

cW

Zµ

[

ℓLγµ

(

−1

2
+ s2

W

)

ℓL + ℓRγµ
(
s2

W

)
ℓR

]

(8.44)

=
g

cW

Zµ

[
gLℓLγµℓL + gRℓRγµℓR

]
. (8.45)

Great. Now let’s consider the effect of the non-universal couplings of the Z boson. We’ll ignore
the KK Z since it will be a small O(10%) correction. Don’t worry, we didn’t go through all that
work for nothing: we’ll use that later.

The whole point is that we’d like to calculate the tree-level diagrams contributing to µ → (3)e
and match those coefficients to those of the effective Lagrangian in Eq. (8.2). Let’s consider the g3
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term. I apologize that there are so many gs floating around, maybe you should pause a moment
to make sure you’ve got them all sorted out. The relevant tree-level diagram gives us

M = gZeRµR

4D

1

M2
Z

gZeReR
4D (eRγµR) (eRγeR) . (8.46)

We now know from our analysis of the non-universal coupling of the Z that

gZeRµR

4D = gZeReR
SM ∆µe = gZeReR

SM

(MZR′)2

2(3 − 2cµ)
log

R′

R
fµfe. (8.47)

Matching to the effective Lagrangian gives

4√
2
GF g3 =

(
gZeReR
SM

)2 1

M2
Z

∆eµ. (8.48)

Plugging in Eqs. (8.42) and (8.45), we get

g2

2c2
W M2

Z

g3 =

(
g

cW

gR

)2
1

M2
Z

∆eµ. (8.49)

Again sorry about all the different gs floating around. As a quick sanity check, g is the Standard
Model SU(2)L coupling, g3 is an effective coupling that we’re solving for, gR are the quantum
numbers with which the right-handed leptons couple to the Z, and gZfRfR

SM = gR(g/cW ) is the full
coupling of the Z to the right-handed leptons: i.e. ∆L = gZµeRγµeR. This gives us

g3 = 2g2
R∆eµ. (8.50)

Completely analogous calculations give

g4 = 2g2
L∆eµ (8.51)

g5,6 = 2gLgR∆eµ. (8.52)

Now we have everything we need to crunch numbers. It’s advisable to do this in a computer
algebra system like Mathematica since it’s easy to modify calculations after you find mistakes. We
note that it’s convenient to approximate fℓR

= fℓL
so that

fℓ =

√

λℓ

Y∗

≈
√

mℓ

Y∗mt

, (8.53)

which makes it easier to plug in actual numbers.
Now let’s quickly go over the effective Lagrangian for µ → e conversion. The effective La-

grangian is written in this strange way,

∆L =
GF√

2
eγ(v − aγ5)µ · [hadronic], (8.54)

where I’ve written [hadronic] to mean stuff that I don’t care about, but noting that I’ve pulled out
the factor of g/cW from the hadronic vertex in order to form the GF . One more note: whomever
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wrote down this effective Lagrangian first (probably Feinberg and Weinberg [23]) used a stupid
normalization of their quantum numbers. In particular, they wrote gstupid

L,R = T3 + 2Qs2
W so that

|T3| = 1 and so gstupid
L,R = 2gL,R.

Our first task is to write the effective Lagrangian in terms of PL,R = 1
2
(1 ∓ γ5), so that

∆L ∼ AeγPLe + BeγPRe.

v − aγ5 =
1

2
A(1 − γ5) +

1

2
B(1 + γ5), (8.55)

so that

A = v + a (8.56)

B = v − a. (8.57)

Good, now we can match these coefficients to the tree-level diagram,

GF√
2

(v ± a) = gL,R
1

M2
Z

∆eµ

(
g

c2
W

)2
1

2
, (8.58)

where the extra factor of 1/2 comes from the stupid normalization. We didn’t bother matching
the hadronic parts because they cancel on both sides. We end up with

v ± a = 4gL,R∆eµ. (8.59)

9 Custodial protection of µ → (3)e

An novel feature that was not discussed by Agashe, Blechmann, and Petrillo [26] is the use of
custodial symmetry to protect the µ → (3)e amplitude. The use of custodial symmetry to suppress
anomalous contributions to the Zbb coupling was first proposed by Agashe et al. [27] and was
applied to heavy quark FCNCs in the Randall-Sundrum model by the Munich flavor physics
factory [28] (and see references therein). This can also be used analogously to protect the Zℓℓ′

couplings that mediate µ → (3)e.
Bulk, gauged custodial symmetry is typically imposed on the RS model with bulk fields in

order to protect the T -parameter, which would otherwise tightly constrain the KK scale. The
custodial symmetry is broken on the UV brane, ‘far away’ from electroweak symmetry breaking
on the IR brane. The cute realization was that this symmetry also automatically protects against
some of the tree-level FCNCs.

The basic idea is that if a Standard Model field (e.g. the b) and any new physics operators
that it couples to (OBSM) respect the custodial O(3) = SU(2)V × PLR symmetry (where PLR is
a discrete symmetry), then the Zbb coupling must be protected. This is because the Z coupling
takes the form

g

cos θW

[
Q3

L − QEM sin2 θW

]
ZΨγΨ. (9.1)
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The electric charge QEM is conserved so that this cannot be affected by new physics. Any con-
tribution to new physics would then modify the SU(2)L diagonal charge Q3

L. By the SU(2)V ,
symmetry, however,

QV = Q3
L + Q3

R (9.2)

is protected and so the modification from new physics must satisfy δQ3
L = −δQ3

R. On the other
hand, the PLR : SU(2)L ↔ SU(2)R symmetry enforces QL = QR and hence the QL cannot be
affected by new physics.

This only holds when the Standard Model field respects the PLR symmetry, which depends on
the embedding of the field into SU(2)L × SU(2)R × U(1)X . In particular, in the lepton sector we
have fields L = (2,2)0, N = (1, 1)0, Er = (1,3)0, Eℓ = (3, 1)0. The right-handed electron lives in
the representation E = Er × Eℓ. These are rather large representations with lots of extra fields.
We may decouple these fields from the low-energy spectrum by imposing appropriate boundary
conditions22. One can see that the left-handed electron ℓ ∈ L is a PLR eigenstate and so should
be protected by the above argument.

[Should still write up: I should write more details about the custodial protection in RS,
but most of the details are worked out nicely in the Munich paper, [28].]
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A Conventions

General (e.g. 5D) spacetime indices are written with capital Roman letters from the middle of
the alphabet, M,N, · · · . 4D Minkowski indices are written with lower-case Greek letters from the
middle of the alphabet, µ, ν, · · · . Tangent space indices are written in Roman letters from the
beginning of the alphabet, a, b, · · · . We will occasionally write x to mean a generic coordinate
on the spacetime, e.g. F (x) = F (xµ, z) in our warped 5D compactification. We use the particle
physics (West Coast, mostly-minus) metric for Minkowski space, ds2 = (+,−,−,−, (−)). Flavor
indices are denoted by i, j, k, ℓ and Kaluza-Klein number by (a), (b), · · · . Occasionally we will have
to ‘overload’ these conventions to label other quantities, but we hope that these exceptional cases
should be easily identified based on context.

22The boundary conditions in these models appear, at first glance, rather arbitrary, with fields within a given
multiplet having different BCs. The point, however, is that these can all be obtained ‘naturally’ from brane-localized
Higgs fields charged under the SU(2)R×U(1)X which get ‘infinite’ vevs. This breaks the SU(2)R×U(1)X symmetry
and allows the component fields of SU(2)R multiplets to get different boundary conditions
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We choose conformally flat coordinates for the Randall-Sundum background,

ds2 =

(
R

z

)2
(
dxµdxνηµν − dz2

)
,

where R is the AdS radius of curvature and with a UV brane at z = R and an IR brane at
z = R′ such that R−1 ∼ MPl and R′−1 ∼ TeV. These coordinates are related to the exponential
formulation of the original RS paper by

z = Reky k = 1/R.

Fermions are bulk Dirac spinors Ψ(x, z) and are decomposed into left- and right-handed Weyl
spinors via,

Ψ(x, z) =

(
χ(x, z)

ψ(x, z)

)

, (A.1)

subject to orbifold boundary conditions

ψL(xµ, R) = ψL(xµ, R′) = 0 χR(xµ, R) = χR(xµ, R′) = 0, (A.2)

where the L and R refer to SU(2)L doublets and singlets respectively. This imposes that the
zero modes of the 5D spinors are chiral. Fermion bulk masses are given by c/R where c is a
dimensionless parameter controlling the localization of the 5D profile. Our gamma matrices are

γµ =

(
0 σµ

σµ 0

)

γ5 = γ0γ1γ2γ3 =

(
i 0
0 −i

)

, (A.3)

where σµ are the usual Pauli matrices and σµ ≡ (σ0,−σi). This normalization of γ5 is necessary
to satisfy the Clifford algebra but differs from that used in, e.g. Peskin and Schroeder [25]. We
use the standard convention σ0 = 1, which has the opposite sign as Csáki et al., [2] and [13]. We
shall use the usual Feynman slash notation only for the 4D Minkowski directions /p = pµγ

µ so that
pMγM = /p + p5γ

5.
The 5D Yukawa matrices (3 × 3 parameters in the Lagrangian) are written as Y or Y5. The

average anarchic value of this matrix is written as Y∗. The 4D zero-Yukawa matrix (to be identified
with the Standard Model Yukawa) is written

yij = fcLi
Yijf−cRj

= λSM
ij . (A.4)

Bulk 5D parameters such as gauge couplings are written with a subscript 5, e.g. e5, and are
related to the 4D couplings via e5 = Re. We perform all calculations in the unitary gauge
where the Goldstone bosons decouple. Further we perform our 5D calculation in the basis where
the kinetic terms are diagonal (i.e. the ‘c-basis’) and all flavor-changing effects come from the
Yukawa interaction, including mass insertions. This is analogous to performing Standard Model
calculations without diagonalizing the Yukawas, i.e. without the CKM rotation.

For shorthand we define the barred differential operator, d̄ = d/2π.
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B Flat XD fermion propagator

Here we derive the chiral fermion propagator in a flat interval extra dimension as a model calcu-
lation using the methods described in this note. The set up for our simplified model is as follows.
We begin with a flat extra dimensional interval with coordinate z ∈ [0, L] where one may take
L = πR to match with standard orbifold conventions.

A complete set of propagators for flat 5D intervals was derived by Puchwein and Kunzst
[16] using finite temperature field theory techniques. Our derivation directly calculates Green’s
functions using simpler methods. The propagator from a fixed point x′ to a given point x is given
by the two point Green’s function of the 5D Dirac operator,

D∆(x, x′) ≡ iγM∂M + m = iδ(5)(x − x′). (B.1)

In mixed position-momentum space where the noncompact dimensions dimensions are treated
in momentum space while the finite dimension is treated in position space the Green’s function
equation is given by

(
−/p + i∂5γ

5 − m
)
∆(p, z, z′) = iδ(z − z′). (B.2)

This is a first-order differential equation with non-trivial Dirac structure. As a trick to solve
this equation we will ‘square’ this operator into one that is second-order and diagonal on the space
of Weyl spinors. We define a pseudo-conjugate23 Dirac operator,

D∗ = −iγM∂M + m. (B.3)

With this operator one can square the Dirac equation into the usual 5D Klein-Gordon equation,

DD∗ =

(
∂2 − ∂2

5 + m2

∂2 − ∂2
5 + m2

)

, (B.4)

where we’ve explicitly written out the diagonal chiral structure on Weyl spinors. Each element
in the Klein-Gordon operator is a 2 × 2 matrix acting on a Weyl spinor. We may now look for
Green’s functions F (p, z, z′) for this DD∗ operator in mixed position-momentum space,

DD∗F (p, z, z′) =

(
−p2 − ∂2

5 + m2

−p2 − ∂2
5 + m2

)(
F+

F−

)

= iδ(z − z′). (B.5)

We now see that solving this simpler equation allows us to trivially construct a solution for the
Dirac Green’s function which satisfies Eq. B.1,

∆(p, z, z′) ≡ D∗F (p, z, z′) =

(
(∂5 + m) F+ σµpµF−

σµpµF+ (−∂5 + m) F−

)

. (B.6)

We solve this by separating F±(z) into pieces

F±(p, z, z′) =

{

F<
± (p, z, z′) if z < z′

F>
± (p, z, z′) if z > z′

(B.7)

23We call this a ‘pseudo-conjugate’ because this is neither a complex nor Hermitian conjugate but an operator
where only explicit factors i are conjugated.
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and then solving the homogeneous Klein-Gordon equations for each F< and F>. The general
solution is

F<,>
± (p, z, z′) = A<,>

± cos(χpz) + B<,>
± sin(χpz), (B.8)

where the eight coefficients A<,>
± and B<,>

± are determined by the boundary conditions at 0, L and
z′. The factor χp is the magnitude of the 5-momentum in the z-direction defined by

pMpM = m2 = p2 − χ2
p. (B.9)

We impose matching boundary conditions at z = z′. By integrating the Green’s function
equation B.5 over a sliver z = [z′ − ǫ, z′ + ǫ] we obtain the conditions

∂5F
>
± (z′) − ∂5F

<
± (z′) = i, (B.10)

F>
± (z′) − F<

± (z′) = 0. (B.11)

These are a total of four equations. The remaining four equations on the branes at z = 0, L impose
the chirality of the fermion zero mode and are the equivalent of treating the interval as an orbifold.
We will denote the left-chiral zero mode states with a superscript L and the right-chiral zero mode
states with a superscript R. We impose that the Green’s function vanishes if a wrong-chirality
state propagates to either brane,

PR ∆L(p, z, z′)
∣
∣
z=0,L

= PRD∗ FL(p, z, z′)
∣
∣
z=0,L

= 0, (B.12)

PL ∆R(p, z, z′)
∣
∣
z=0,L

= PLD∗ FR(p, z, z′)
∣
∣
z=0,L

= 0, (B.13)

where PL,R = 1
2
(1∓ iγ5) are the usual projection operators. Note from Eq. B.6 that each of these

equations is actually a set of two boundary conditions on each brane. For example, the left-handed
boundary conditions may be written explicitly as

FL
+(p, z, z′)

∣
∣
z=0,L

= 0, (B.14)

∂5F
R
− (p, z, z′)

∣
∣
z=0,L

= 0, (B.15)

where we’ve used that pµ is arbitrary and m = 0. Note that Csaḱı et al. [13] emphasized that only
one boundary condition for a Dirac fermion needs to be imposed in order not to overconstrain
the first-order Dirac equation since the bulk equations of motion converted boundary conditions
for χ into boundary conditions for ψ. In this case, however, we are dealing with a second -order
Klein-Gordon equation that does not mix χ and ψ. Thus the appearance and necessity of two
boundary conditions per brane for a chiral fermion is not surprising, we are only converting the
single boundary condition on ∆(p, z, z′) into two boundary conditions for F (p, z, z′).

Solving for the coefficients A<,>
± (p, z) and B<,>

± (p, z) for each type of fermion (left- or right-
chiral zero modes) one finds the results of table 1. Using trigonometric identities one may combine
the z < z′ and z > z′ results to obtain

FX
± =

−i cos χp (L − |z − z′|) + γ5℘(X) cos χp (L − (z + z′))

2χp sin χpL
, (B.16)

where X = {L,R} with ℘(L) = +1 and ℘(R) = −1. The fermion Green’s function can then be
obtained trivially from Eq. B.6.
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AL<
+ = sp(L − z′)spL AL>

+ = spz
′cpL AR<

+ = 0 AR>
+ = −cpz

′spL
BL<

+ = 0 BL>
+ = spz

′spL BR<
+ = −cp(L − z′) BR>

+ = −cpz
′cpL

AL<
− = 0 AL>

− = −cpz
′spL AR<

− = sp(L − z′) AR>
− = −spz

′cpL
BL<

− = cp(L − z′) BL>
− = −cpz

′cpL BR<
− = 0 BR>

− = spz
′spL

Table 1: Flat case coefficients in (B.8) upon solving with the boundary conditions (B.10-B.13).
We have used the notation cpx = cos χpx and spx = sin χpx.

C Diagonalization of Anarchic Yukawas

In this appendix we make some notes about the order of magnitude of the off-diagonal elements
of the rotation matrix which diagonalizes the zero mode (SM) effective Yukawa coming from an
anarchic 5D Yukawa matrix. In the c-basis, i.e. the basis where the bulk masses are diagonalized,
the zero-mode Yukawas look like





f1c11f1 f1c12f2 f1c13f3

f2c21f2 f1c22f2 f2c23f3

f3c31f3 f1c32f2 f3c33f3



 (C.1)

where all of the cijs are O(1) (i.e. we factor out a Y∗). The fs, which represent the fermion
wavefunctions on the brane, generate the observed mass hierarchies. To make this manifest, let
us define

δ2
1 = f1/f3 δ2 = f2/f3 (C.2)

so that δ1 ∼ δ2 ∼ δ ≪ 1. We can then write the SM Yukawa as

f 2
3





δ4
1c11 δ2

1δ2c12 δ2
1c13

δ2
1δ2c21 δ2

2c22 δ2c23

δ2
1c31 δ2c32 c33



 . (C.3)

First we claim that the eigenvalues are given by O(f 2
1 , f 2

2 , f 2
3 ), i.e. that upon diagonalization we

indeed get a realistic hierarchy assuming generic non-hierarchical cijs. This is important because
we then know that the rotation matrix will have terms proportional to the δs on their off-diagonal
elements.

A cute way to prove this claim is to use perturbation theory in the hierarchies of the δs. The
eigenvalues are given by solutions to

det(λ − λi) = (1 − λi)(δ
2
2 − λi)(δ

4
1 − λi) + O(δ4

1δ
2
2) = 0. (C.4)

Consider the largest eigenvalue, λ3. We may write

(1 − λ3) =
O(δ6)

(δ2
2 − λ3)(δ4

1 − λ3)
. (C.5)

This is generically solved by λ3 ∼ O(1). As a sanity check, we would have expected that λ3 be
on the order of the largest element in such a hierarchical matrix so that the right-hand side is
O(δ6) ≪ 1 since the denominator should be O(1). One can repeat this argument for the other λs
to show that they are respectively of order δ2 and δ4.
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