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A theoretical description and comparison of causal relations in the Lorentz and Coulomb
gauges is presented with special emphasis upon retardation in the Coulomb gauge. It
is shown that the transverse character of the current density in the Coulomb gauge com-
pensates for the apparent instantaneous Coulomb interaction, which appears as a formal
consequence of the subsidiary condition imposed upon the vector and scalar potentials.

INTRODUCTION

HE introduction of potentials is a common

procedure in dealing with problems in elec-
trodynamics. In this way Maxwell’s equations
can be written in forms which are formally
simple and which permit one to draw upon a
variety of formal techniques of analysis in treat-
ing the problem. There is a certain lack of
uniqueness in the definition of the potentials,
moreover, which allows one conveniently to im-
pose conditions on the potentials without affect-
ing the results of measurements made on the
system being studied. Such choices are com-
monly called gauges, and perhaps the most com-
mon of these are the Lorentz gauge and the
Coulomb gauge.! A prominent feature of the
Lorentz gauge is that the finite speed of propa-
gation of signals originating at the locations of
the charge and current-density sources is em-
phasized throughout within the form of the field
equations. On the other hand, the Coulomb
gauge is characterized by an instantaneous
Coulomb interaction which is clearly a formal
result originating in the conditions one has im-
posed upon the potentials. Although the instan-
taneous propagation of signals is not possible in
nature, any physically observable quantity cal-
culated within the framework of the Coulomb
gauge is independent of the choice of the gauge.
Obviously, the description of propagation with
finite velocity of the signals in the Coulomb
gauge must be included within the formalism of

1. D. Jackson, Classical Electrodynamics (John Wiley
and Sons, Inc., New York, 1962), Chap. 6, p. 179.

the Coulomb gauge. It is the purpose of the pres-
ent paper to compare the Coulomb gauge with
the Lorentz gauge and to show how the Coulomb
gauge properly describes the propagation with
finite velocity of the electromagnetic signals due
to the presence of charge and current sources.
The discussion is carried out within the frame-
work of the classical theory, but one can easily
generalize the treatment to the quantized theory
by recognizing the correspondence of the various
Green’s functions to the commutation relations
for the quantum field operators in the quantized
theory.?8

I. FORMAL DESCRIPTION OF THE
LORENTZ AND COULOMB GAUGES

In the Lorentz gauge, Maxwell’s equations
are*

OA(rt) = —4xJ(xt) (1)

and
O l//(l‘,t) - — 41rp(l‘,t),
where
O = V22— (0%3) (¢ =1),

and the subsidiary condition imposed upon the
potentials A(r,;#) and y(rt) is

V-A(xt) + oy (x,t) /ot = 0.

2 1.. 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Co., Inc., New York, 1949), Ist ed., Chap. 14, p. 373.

3S. S. Schweber, An Introduction to Relativistic
Quantum Field Theory (Row, Peterson and Company,
Evanston, IIl., 1961), Chap. 9, p. 242.

4Ref. 1, p. 181
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These equations have so-called advanced and
retarded solutions. Without loss of generality we
restrict ourselves to the consideration of the re-
tarded solutions, which are

A(r,t):élwf ¥ dt Dp(y — v, t — )
J(re)y (2)

and

y(r,t) = 4r f a3 dt Dy — ', ¢ — 1)

p(l",t’).
Dg(rt) is the retarded Green’s function for the
inhomogeneous D’Alembert’s equation, and is

related to the homogeneous Green’s function
D(r,t) by the relation®

8(t) D(x,t) = — Dr(rt), (3)
where
1 ¢>0
() =4 %t=0
[0 <.
Useful forms of D(x,t) are
e®T sin ki
— 3
D(rt) = — o )Sfdk . (4)

and

D(rt) = 1/4=r [8(r + 1) — d(r —£)]

= D,(xt) — Dgr(rt). (5)
Here k = k| and r = |r|, and Ds(rt) is the
Green’s function for the inhomogeneous D’Alem-
bert’s equation corresponding to advanced solu-
tions. D,(r,¢) and Dg(rt) may be written

Dy(r,t) == 8(r + t)/4nr, Dr(x,t) = d(r — t)/4nr.

(6)
Using Eq. (4), one can show that
O Dr(rt) = — 8(r)d(%). (7)
Equations (2) may be written in the form
_ [ g Jit—|r—r])
A(r,t)_..fd'ff tr-ri Ia

and

pr t—|r—vr])

E___.l
jr—1r

y(rt) = f dor £

5J. M. Jauch and F. Rohslich, The Theory of Photons
and Electrons (Addison-Wesley Publ. Co., Inc., Cam-
bridge, Mass., 1955), Appendix Al, p. 418.
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In the Lorentz gauge one then sees that the
potentials are treated symmetrically and that
both the vector potential A(r,f) and the scalar
potential y(rt) are properly retarded, describ-
ing the propagation of source signals originating
from the charge and current sources present at
all the points (¥t — | r — 1’ |) and arriving at

-the point r at the later tirne 1.

In the Coulomb gauge, Maxwell's equations
are®

E]Al

(r) (9)

and

VZq&(ri) :*—-471'})(1'?5) (10)
with the subsidiary condition V-A. (r t) = 0.
It follows that V-J (rf) = 0. J, (rt) is the

transverse part of ](r t) in the sense to be de-
scribed later.

Equation (10) has the solution

21
¢(rt)y = | d% ’~—————-—~” (11)
J [T
while Eq. (9) has the retarded solution

Ai(r,t) = 4= f &’ dt’ Dp(r — v ¢t — 1)
T, ()
or
I, (v, t —

o]

r—¥)
. (12)

A.L(r’t) :f a3

Thus A | (r¢) is made up of contributions from
the transverse current] (r’",¢) at the point 1’ origi-
nating at an earlier ’c1me t — |r — r’| and prop-
agating with the speed of light to the point r at
the time . On the other hand, from Eq. (11),
one notes that the scalar potential ¢(r,f) is built
up of signals from the charge-density source
p(¥t) at all points ¥’ but at the same time t.
That is, &(r#) describes an instantaneous
Coulomb interaction. One notes also that the
potentials are not treated symmetrically in the
Coulomb gauge. Physically observable quanti-
ties, such as the electric intensity E{r,), must
be independent of the choice of the gauge, how-
ever.

S Ref. 1, p. 182.
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In the Lorentz gauge,
EX(rt) = — oA(rt) /ot — Vy(rt).

Assuming that J{rt) = J(r0)e™* and p(rt)
= p(r0 )€™, one obtains

Jwtg—lr—r|)
}r ———,r’{

_ P T =) s
v [ dr 11*1} (13)

Similarly in the Coulomb gauge, assuming that
J () =17 ( ro)e ® and p(rt) = p(re)e™,

EL(1t) = io f &

and using the fact that E°(r) = —0A | (r,t)/0t
— V(r),
one obtains
f ].L (r’«*t —r % )
— 2 3!
=iw) d°r =
- 3 3 p(l” t!
vfd e (14)

For a given r and ¢, Egs. (13) and (14) must be
equal. Moreover, one requires that Eq. (14) for
EC(r,t), when properly analyzed, must describe
the propagation with finite velocity of the contri-
butions to E(r,t) from the sources J (r) and
p(r,t) at points on the light cone in the past. The
superficial difference between Eq. (13) and Eq.
(14) is clearly related to the transversality of
A N (r,t) or, equivalently, to the difference in the
subsidiary conditions for the gauges in each case.
The properly retarded properties of propagation
can be demonstrated in the Coulomb gauge.

II. RETARDATION IN THE
COULOMB GAUGE

Defining the transverse projection operator by
the relation

Py, 1) = 2
[save—n—3 s (5]
(15)
and using the fact that
VE(1/r) = —4x¥%(x), (18)
one sees easily that
aPy(r, ¥’} /ox; = 0. (17)
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Repeated indices will be summed over. Similany,
the quantity

Tij(l‘, r’) =

[ 1
Dx0%"; ( r— r’;) (18)
can be written
Ty(r,r’) =
{ b  3(x—xh) (% —a))
)r —rp [r—rp®
-+ éf 3;;0% (r — r’)] (19)

An arbitrary vector S(r) can be written as the
sum of a longitudinal vector S.(r) and a trans-
verse vector Sy(r). Noting that

I\

S(x) = Py ——e (20)
g =
and using the operator identity,
V2=V(V-— VX(VX  (21)

one obtains, after some manipulation,
1 A
S(r) ::Z;fdgr’ﬂj(r? r') Si(r') e

—{~f d3r’ Py(r, ¥') Sj(r’)/\c (22)

The identification is made that

SL(r):%rf B Ty(n ) Si(r) 6, (23)

and
ST(r) o uf d?r Pij(r, ].") S]-(r’) é\i. (24)

Here use has been made of Eq. (13) in the sec-
ond integral of Eq. (20). Equations (23) and
(24) may be written in more convenient form as

Sr=PS, S, = (1/4x) TS . 95)

When convenient, such functional relations as
Eq. (23) and Eq. (24) will be written in this
obvious notation. The transverse current ]J, {r,t)
is related to the current J(r,t) by the relation
J, = PJ, as may be seen by carrying out the
derivation of Egs. (1), (9), and (10) starting
from Maxwell’s equations written in their forms
involving the electric- and magnetic-intensity
field vectors. In addition, one can show that

[0,P]=0and [P,Dz]—0. (28)
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Using this fact, one then notes that
POA = OPA = DA_L: ---471-(PJ) et ——4le.
(27)

Thus (PA —A ) is a solution to the homoge-

neous wave equatlon and only the case where
(PA—A ) = 0 need be studied.

Now

A = 4aDy]. (28)

It follows that

A | = 4xPDg] = 4xDysJ | (29)

At this point one is able to see the relationships
between the Lorentz gauge and the Coulomb
gauge. Consider the equation

A‘Lx 4 PD;J = PA.
In explicit form,

Ai(r,t):fiw fd3'r”

[ [ @r ar Py (1, ¥)Da(r 17,1~ 1) ]
R
(21

Li(x”,¢7) e; (30)

or
A (l‘ t) = 4r fdsr;
[ f d3r” dt” Py(r, ¥’ ) De (¥, v £ — t,,)j

]j(l'”: t”)ei . (31)

Some of the details of the composition of A | (r,f)
from signals propagating from the source cur-
rents, as described by these equations, are
demonstrated schematically in Fig. 1. A(r’t) at

Fic. 1. A(x',t), the

vector potential in

the Lorentz gauge,

' is built up from
Time contributions of the
current  density

Je””) which

propagate with the

speed of light from

. the points (r",”).
A A (rt), the vec-

-—Ecﬁj ; SPase - WL
2 : tor potential in the
AN Coulomb gauge, is
DUNg T the formal result

of an instantane-
ous propagation
of A(r,t) from
the points (x',t)
to (nt).

KLG\')

835

Fic. 2. A;(r,t),

the vector poten-
* tial in the Cou-
lomb gauge, I8
built up from con-
fributions of the
transverse current

density ] {(r,t")

ARG - N which pmpagate
L ) () with the speed of

' i srese=light from the

2,»' D : points (rf").
NG J (") s the

B formal result of

7o ormal result o

an  instantaneous
propagation of
J (" ,£") from the
points  {(x",t") to
(r,t").

the point 2 with the space-time coordinates
(r't) is built up of signals from elements of the
current J(r”,t”) at the point 3 with space-time
coordinates (x”,¢”). Point 3 is located on the light
cone the apex of which lies at point 2. One notes
that A(r’,¢t) is the vector field one would obtain
in the Lorentz gauge at the point ( r’,f) and that
the signals from the current at point 3 propagate
to point 2 with the speed of light. (A (rt),
the vector potential one obtains in the Coulomb
gauge, is then seen to be the transverse part of
A(x,t) or, in the framework of the present dis-
cussion. the result of the instantaneous propaga-
tion of A(r’t) to the point (1) through the
transverse projection operator Py(rx’). In Eq.
(31) one sees that A | (r.¢) is the sum of such
contributions taken over all times t"” == ¢, and all
space points r” and ', with the restriction that
(r';t) and (r”,t”) lie on the light cone as indi-
cated above. In a similar way, recalling that J
= PJ, one may write Eq. (12) in an explicit
form:

A (rt) _-47rfdgf de” d*”

{

{D (l‘,l‘,t——t") U(rr r/)]]( ”t”)e‘} (32)

Figure 2 shows how J L (r',t”} is the transverse
part of J(r”#”), or the instantaneous propaga-
tion of J(r”,t”) to the point (1,t”) through the
transverse projection Py{r'xr”). The potential
A (rt) is then seen to be the properly retarded
composmcn of signals originating with elements
of the current density J, (+',t”) at all points in
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the past on the light cone with its apex at (r,f).

Returning to the question involving the re-
conciliation of the instantanecus Coulomb inter-
action in the Coulomb gauge with the fact that
all interactions in physics must propagate with a
finite velocity which must not be greater than
the vacuum speed of light, one can now see that
the instantaneous Coulomb interaction is a
formal result and that the interactions in the
Coulomb gauge do have the proper propagation
features. The retarded propagation of the inter-
actions is somewhat disguised in the form of
A (r,t) as given by equivalent forms in the Egs.
(31) and (32). One notes in Fig. 1 and 2 that,
in each case, a propagation along the light cone
is involved in the composition of A N {rt) in ad-
dition to an instantaneous propagation in each
case corresponding to the operation of taking
the transverse part of A(r ) and J(r'#’), re-
spectively.

With these comparisons in mind, one can
show that the terms arising from taking the
transverse parts of these quantities include a
contribution which exactly cancels the instanta-
neous Coulomb interaction term in Eq. (14) for
E®{(r,t) and contributes another term which re-
sults in the properly retarded Coulomb inter-
action demonstrating the equivalence of Egs.
(13) and (14).

1II. DEMONSTRATION OF THE
EQUIVALENCE OF EL{(ri) EC(r)

In particular, one sees that the key to recogniz-
ing the equivalence of Eq. (13) and Eq. (14)
lies in the transversality of J L (r,£). Substituting
U =P]J into Eq. (14) and rearranging terms,
one obtains

Ay iojr—r"|

Eic(r,w) :iwf &Pr” "zl—("'r*(—)t—o‘)f—‘j—“‘*—
r—r |
9 . I (1" ,w}

;g—x—;—[d%' !

r — 1’|

— b I~(l‘" w)eim{r-—rq
A3 3y 22N 2
i Jarar

r — v

=)
o’ Oy b —r'l /" (33)

After a partial integration with respect to r”, the
third term of this expression may be written in

AND B. GOODMAN

the form

HI_-—«fd L

fdsr; Bi’ ( jr’ir-;) oxy” Ji(x7w).

Noting that
(V24 o)

eico{r—r‘i

F—]
and wusing the equation for conservation of
charge

= — 4ad® (xr — 1), (34)

/0x/" I;(x" ) — fop(r”0) =0,  (35)
one can write
_—-_1‘ 3,{- ) giw|r»-r'1
111— 4r'fd1"’v Il’——r), }
v der P(r o) 1
{ f H
fds' o)

Adding this result to the second term of Eq.

0
(33), one sees that the terms involving e
X;

f d*r” p(r”w) (jr — 1”|) 7" cancel. That is, the
transverse current containg a term which results
in the cancellation of the instantaneous Coulomb
interaction term. The remaining terms are

Eic(l' (u) = dw f d31"/ ]iir”“”) ei@[r--r"|
{ —

+—~‘fd3 [ . ewil i‘l ]
2 o ]

In the second term of this expression one may
replace V2 by V*%, then integrate by parts with
respect to ', to obtain

. , Ji(x"m) el
Eic(l',w) == lwf dg?"w

+ f . zm]r-—-r ]

[ai, fd31”p(1 ") V72 (M{r'jr" )]
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Because of Eq. (16), this becomes

. 1‘”, eiwir—r"|
Eic(l',w) = io f d31-”_]1’(_\;f)—)_.r7__
fds , p(l'”m)ewlr jad|
T ] '
Reinserting the time dependence e‘“”t, one then

sees that
E¢(rt) =E*(r4).

IV. DISCUSSION
A description and comparison of causal rela-
tions in the Lorentz and Coulomb gauges has
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been made. The instantaneous Coulomb inter-
action has been shown to be a formal conse-
quence of the choice of subsidiary condition
imposed upon the potentials introduced into
Maxwell’s equations. Moreover, the necessary
result that the electric intensity calculated within
the framework of each gauge must be the same
has been derived and it has been shown that
the transverse character of the current density
J, (r) compensates for the apparent instan-
taneous Coulomb interaction appearing in the
expression for E€(r,t).

Germanium Detectors and the Compton Effect®

Davo X. McDaNIELS AND KIRK BATTLESON
Physics Department, University of Oregon, Eugene, Oregon
(Received 31 January 1967; revision received 3 April 1967)

Recent advances in solid-state lithium-drifted germanium detectors have opened a new
era in gamma-ray spectroscopy. A typical detector system is described which could easily
be incorporated into an advanced teaching laboratory. The measurement and analysis of
gamma-ray spectra from radioactive isotopes is reviewed. As an example of a further ex-
periment, the Compton recoil distribution in a germanium crystal is compared with the
Klein—Nishina prediction. Difficulties in making a quantitative comparison are discussed.

INTRODUCTION

HE recent development of high-resolution

semiconductor detectors for charged par-
ticles' and gamma rays®~* has made a very great
impact on experimental techniques in low-energy
nuclear physics. Lithium-drifted germanium
crystals, with 10 to 20 times better resolution
than could be attained heretofore with sodium
iodide scintillation counters, have opened a new
era of research in electromagnetic transitions.
The precision of measurements in nuclear spec-
troscopy has suddenly become comparable with

* Supported in part by the United States Atomic En-
ergy Commission,

17, W. Mayer, Electron. Nucl., Compt. Rend. Collog.
Intern. Paris, 1963, 129 (1964) A review of recent
developments.

2D, V. Freck and ]. Wakefield, Nature 193, 669
(1962).

3P. P. Webb and R. L. Williams, Nucl. Instr. Meth-
ods 22, 361 (1963).

4G, T. Ewan and A. T. Tavendale, Can. ]. Phys. 42,
9986 (1964).

that customarily achieved in the determination
of optical spectra.

Germanium detectors offer interesting possi-
bilities in areas beyond nuclear research. In the
teaching laboratory, in particular, these devices
make a number of “modern physics” experiments
possible. For example, in addition to the study
of nuclear properties through analysis of gamma-
ray decay schemes, students can test aspects of
quantum electrodynamics by measuring the
shape of the electron distribution produced by
Compton-scattered photons and can measure
the electron rest mass to better than 0.1%.
Moreover, the assembly and operation of solid-
state detectors provides students with an oppor-
tunity to become familiar with high-vacuum
techniques, the use of linear electronics, and
other aspects of laboratory practice. The preci-
sion of the data invites the application of com-
puter analysis.

In the present article, we review the basic



