Remark: These are rough notes which may or may not correspond to what we actually did in section! - Fuj

Announcements

- Encouraged: Read §3.9 §3.10
 - for culture
 - for later

- HW Extensions

 We've been fairly lax - but just because you get an extension, it doesn't mean that the class is slowing down!

 → Each extra day spent on old HW is one less day for current HW

 → Please soon!

 We're giving you wiggle room because you're grown ups, but make sure you don't end up screwing yourself.

- Repeat: Work with other people!!
 - it's a matter of efficiency.

- HW#9 Hint - to be posted

 Use KelvinBar KelvinBar

- HW: Hand writing, be honest with?
WARM UP

Getting used to ε. (Polarizability)

Q: is $\varepsilon > 1$
 or ≤ 1?

\[D = \varepsilon E \]

What is D? This is the "electric field" that is sensitive to (sourced by) only free charge, not bound charge. (PBZ of the medium)

So: Which is bigger, D or E?

D is! Bound dipoles align according to E, create a contribution that wants to cancel E.

\[E \rightarrow \begin{array}{c} + \\downarrow \\uparrow \\
\end{array} \]

\[\rightarrow \begin{array}{c} - \\uparrow \\downarrow \\
\end{array} \]

\[\overset{\text{Stirrer}}{\varepsilon > 1, D > E} \]

\[\overset{\text{(do not confine \mu) \rightarrow p/\varepsilon}}{\text{field \& long distances}} \]

\[\overset{\text{\mu} \rightarrow 0 \text{ doesn't make sense.}}{\text{}} \]
Remarks on μ

$D = \varepsilon E \quad \text{but} \quad H = \frac{1}{c} \mathbf{B}$

\[\uparrow \quad \uparrow \]

$= E + \mu\mathbf{P}$

$= B - \mu\mathbf{M}$

\[\mu \varepsilon \mathbf{E} = \mu_0 (\mathbf{B} + \mathbf{P_e}) \]

\[= -\nabla \mathbf{E} \]

\[\nabla \mathbf{B} = \frac{\mu_0}{c} (\mathbf{j}_f + \mathbf{j}_b) \]

\[= \mathbf{c} \nabla \times \mathbf{M} \]

In fact:

$\mu \gg 1$ diamagnetic

$\mu \ll 1$ paramagnetic

($\mu \gg 1$ ferromagnetic)

But for typical materials, $\mu \approx 1$ so for now we stick to this regime.
Dielectric (ε) Media

\[f \approx 1 \]
\[\sigma = 0 \quad \text{Why?} \quad \sigma \neq 0 \Rightarrow \text{J nons} \]

This will be all about this.

\[\nabla \times \mathbf{B} - \frac{\varepsilon_0}{c} \frac{d}{dt} \mathbf{E} = \frac{4\pi}{c^2} \mathbf{J} \quad \text{(Faraday's Law)} \]

Punchline: Light travels slower in media.

index of refraction \(n \)

\[n = \frac{c}{v} \]

Easy to see,

\[\nabla \times \mathbf{B} = \frac{1}{c} \frac{d}{dt} \mathbf{E} \quad \Rightarrow \quad \nabla \times \mathbf{B} = \left(\frac{\varepsilon_0}{c} \right) \mathbf{E} \]

\[\text{Then} \quad \nabla \times \mathbf{E} = \mathbf{D} = \varepsilon_0 \mathbf{E} \]

\[\nabla \times \mathbf{D} = \nabla (\mathbf{D} \cdot \mathbf{B}) - \nabla B = \frac{8\pi}{c} \mathbf{G} \]

\[= -\frac{8\pi}{c} \mathbf{G} \left(\frac{\varepsilon_0}{c} \right) \]

But why? (Microscopically)

Problem: Show, by supposition, that \(v = \frac{1}{c} \). Assuming the incident wave travels in \(\varepsilon = 0 \). Show \(v \neq 0 \).

In conclusion, the induced charge...
Superposition

\[\text{IDEA: } \pm \frac{1}{2} (\hat{z} - i \hat{y}) \]

WAVE CAUSES OSCILLATIONS IN DIPOLAR MEDIUM

SUPERPOSITION OF INITIAL WAVE + INDUCED WAVES GIVES NEW MONOCHROMATIC WAVE

\[V = \frac{\lambda}{2N} = \frac{\lambda}{v} \]

Two PART Problem

1. ("nonperturbative")

\[E_1 = E_0 e^{i k' x - i \omega t} \]

\[B_1 = \frac{E_0}{c} e^{i k' x - i \omega t} \]

\[E_r = E_0 e^{i k x - i \omega t} \]

\[B_r = \frac{E_0}{c} e^{i k x - i \omega t} \]

\[k' = \frac{n \lambda}{c} = \frac{n \lambda}{v} \]

\[k = \frac{\omega}{v} \]

Assume \[V = \frac{\lambda}{v} \] here (well prove later)

we will study this in ch. 6 (Basis of optics)

FIND \[E_T \neq \text{EXPAND in } h = 4\pi \hbar e \]

\[E_T = E_0 e^{i k' x - i \omega t} \]

\[B_T = \frac{E_0}{c} e^{i k' x - i \omega t} \]

\[\hat{y} \]

\[\hat{y} \]

Show that superposition above gives same expansion in \(h \).
BC (from Maxwell @ interface)

\[\mathbf{D} = 0 \Rightarrow \mathbf{e}_1 \mathbf{E}_1^\perp = \mathbf{e}_2 \mathbf{E}_2^\perp \]
\[\mathbf{D} \times \mathbf{E} = 0 \Rightarrow \mathbf{E}_1^\perp = \mathbf{E}_2^\perp \]
\[\mathbf{D} \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B}_1^\perp = \mathbf{B}_2^\perp \]
\[\mathbf{D} \times \mathbf{H} = 0 \Rightarrow \mathbf{H}_1^\perp = \mathbf{H}_2^\perp \]

\[\mathbf{E} - \text{field} : \quad \mathbf{E}_0 + \mathbf{E}_n = \mathbf{E}_T \]
\[\mathbf{B} - \text{field} : \quad \mathbf{E}_0 - \mathbf{E}_n = \mathbf{n} \mathbf{E}_T \]

\[2 \mathbf{E}_0 = (n+1) \mathbf{E}_T \Rightarrow \mathbf{E}_T = \frac{2}{n+1} \mathbf{E}_0 \]

Similarly: \[\mathbf{E}_n = -\left(\frac{n-1}{n+1} \right) \mathbf{E}_0 \]
but we don't care here.

Now: Assume \(n^2 = 1 \Rightarrow n = \sqrt{n^2} = \sqrt{1+\alpha^2 x} = \sqrt{1+h} \)

\[\mathbf{E}_T = \frac{2}{\sqrt{1+h}+1} \mathbf{E}_0 e^{i\frac{\sqrt{1+h} kx - iwt}{\sqrt{1+h}}} \]

\[\sqrt{1+h} = 1 + \frac{1}{2}h - \frac{1}{8}h^2 \]

\[\mathbf{E}_T = \frac{2}{2+\frac{1}{2}h - \frac{1}{8}h^2\cdots} \mathbf{E}_0 e^{i\left(\frac{1}{2}h - \frac{1}{8}h^2 + \cdots\right) kx - iwt} \]

\[\mathbf{E}_0 \]
For simplicity, take only the 0 in h
so you can check the rest using Mathematica
(use series function)

$$E_{1} = (1 - \frac{1}{4}h(1 - 2ikx) + ...)E_{0}e^{ikx}e^{jyt}$$

Part II: Iterative Solution from Superposition

Incident Plane Wave $\boxed{E_{i}}$ as before

Induced A Polarization

$$\mathbf{P} = \chi_{e}E_{i} = \chi_{e}E_{0}e^{ikx}e^{-jyt}$$

Time Varying = **Induced Current**

$$J_{P}^{(1)} = \mathbf{\dot{P}} = -j\omega \chi_{e}E_{0}e^{ikx}e^{-jyt}$$
Lemma: Given a neutral plane surface current \(k(t) \) is

\[
E = -\frac{2\pi}{c} \int \frac{k(t-s/c)}{\sqrt{s^2 + \frac{r^2}{c^2}}} ds
\]

Finite time effects

More on this later!

Proof

\[
A(t) = \frac{1}{c} \int \frac{k(t-r/c)}{\sqrt{s^2 + \frac{r^2}{c^2}}} ds
\]

\(t_r = t - \frac{s^2 + r^2}{c} \)

Retarded time

\[
= \frac{2\pi}{c} \int_0^{t_r} k(t-r/c) \frac{s}{s^2 + \frac{r^2}{c^2}} ds
\]

\[
u = \frac{1}{c} \left(\frac{s^2 + r^2}{c} - \frac{s^2}{c^2} \right)
\]

\[
du = \frac{1}{c} \frac{d}{s^2 + r^2} ds
\]

\[
t - \frac{s^2 + r^2}{c} = t - \frac{\nu}{c} - u
\]

\[
= \frac{2\pi}{c} \int_0^{t_r} k(t-r/c-u) du
\]

\[
E = -\frac{1}{c} \frac{2K}{2\pi} = -\frac{2\pi}{c} \int_0^{t_r} \frac{2K}{2\pi} k(t-r/c-u) du
\]

\[
+ \frac{2\pi}{c} \int_0^{t_r} \frac{2K}{2\pi} k(t-r/c-u) du
\]

\[
= -\frac{2\pi}{c} K(t-r/c) - 0 = -\text{assumed!}
\]
\[E = -\frac{\eta}{c} k (t - \frac{x}{c}) \]

So: INCIDENT \to \text{POLT} \to \text{CURRENT} \to E

\[E_0 = \left(-\frac{2\pi}{\alpha} \right)^2 (\int_{x}^{\infty} e^{-iwx} E_0 e^{\frac{x-x'}{2\sigma}} dx') \left(\int_{-\infty}^{x} e^{-iwx} E_0 e^{\frac{x-x'}{2\sigma}} dx' \right) \]

\[k = \frac{\omega}{c} \frac{\hbar}{2} E_0 \frac{\hat{z}}{z} \left(e^{i(kx-\omega t)} \int_{0}^{\infty} e^{-i\tilde{\omega}t} \tilde{\omega} \tilde{M} \tilde{M}^{\dagger} \tilde{M} \tilde{M}^{\dagger} \right. \]

\[= i \frac{\hbar}{c} \hat{z} E_0 \left(e^{i(kx-\omega t)} \int_{0}^{\infty} e^{-2ik \tilde{\omega} t} \tilde{M} \tilde{M}^{\dagger} \tilde{M} \tilde{M}^{\dagger} \right) \]

WAVE REFLECTED FROM FAR SIDE OF DIELECTRIC.

ARTIFACT OF PURE PLANAR WAVE.

So it vanishes.
\[
E_1^{(1)} = E_i \frac{\hbar}{4} i k (2x - \frac{i}{ik})
\]
\[
= E_i \frac{\hbar}{4} (2ikx - 1)
\]
\[
= -E_i \frac{\hbar}{4} (1 - 2ikx)
\]

\[\text{and} \quad E_\downarrow \]

\[\text{WOW! EXPLAINS TRANSPARENCY}\]