First Cavity Results from the Cornell SRF Group's Nb$_3$Sn Program

Sam Posen and Matthias Liepe
Cornell University
Thursday, Oct 3, 2013
NA-PAC ’13, Pasadena, California
Nb$_3$Sn has T_c of ~ 18 K, vs ~ 9 K for Nb: much lower BCS $R_s(T)$

- Significant reduction in losses at same temperature
- Possibility to operate at higher temperatures: LHe at atmospheric pressure? Cold gas?
- Smaller cryo plant and less grid power
 - Application to CW SRF linacs for light sources, small scale accelerators (closed He gas cryogenic system for universities/hospitals), industrial applications (wastewater and flue gas treatment, isotope production)
- Higher predicted superheating field ~ 400 mT, nearly twice Nb
 - Application to high energy SRF linacs: reduce # of cavities
Previous SRF Research with Nb$_3$Sn

1.5 GHz single cell Nb$_3$Sn cavity

- Excellent R_s at low fields, but large increase in R_s with field ("Q-slope") above ~ 5 MV/m
- Various suggested causes: intergrain losses, bad stoichiometry, and vortex penetration at lower critical field B_{c1}

S. Posen - First Cavity Results from the Cornell Nb3Sn Program
B_{c1} is the onset of metastability. Above B_{c1}, an energy barrier prevents vortex penetration, but surface defects of size $\sim \xi$ lower barrier.

Is ξ of Nb$_3$Sn so small that B_{c1} is the limit?

ξ of Nb \sim 20-30 nm
ξ of Nb$_3$Sn, NbN, MgB$_2$ \sim 3-4 nm

If vortices penetrate at B_{c1}, all alternative SRF materials would be severely limited.
Cornell Cavity Coating Chamber

- Degas: 1 day
- Nucleation: 5 hours
- Coating: 3 hours
- Surface diffusion: 0.5 hours

See THPO066, SRF11 for details of coating process and commissioning process using samples.

S. Posen - First Cavity Results from the Cornell Nb$_3$Sn Program
Cornell Nb$_3$Sn Coated Cavity

S. Posen - First Cavity Results from the Cornell Nb$_3$Sn Program
Breakthrough Nb\textsubscript{3}Sn Cavity

- New Nb\textsubscript{3}Sn cavity: ERL shape (similar to TESLA), single cell, 1.3 GHz
- Tested after very slow cool (>~6 min/K)
- Excellent performance, especially at 4.2 K
- The first accelerator cavity made with an alternative superconductor that far outperforms Nb at usable gradients
Breakthrough Nb₃Sn Cavity

Very low $R_{res} \sim 10$ nΩ, similar to most Wuppertal cavities

Huge (factor of ~ 10) Q_0 improvement at 4.2 K medium fields compared to Wuppertal

~ 20x more efficient than Nb at 4.2 K

S. Posen - First Cavity Results from the Cornell Nb₃Sn Program
Limiting Defect at 2K

- Localized pre-heating just below first quench
- Defect – not a fundamental limit
- Can reach higher fields by fixing defect

Before quench, $E_{\text{acc}} = 13 \text{ MV/m}$, $Q_0 = 1 \times 10^{10}$
• No sign of Q_0 change near T_c of niobium: excellent Nb$_3$Sn coverage!
• High T_c of 18.0 K close to maximum literature value
• Extract material parameters from this data
Fits to Material Parameters

- **Parameter** | **Value**
 - $\lambda_L(0)$ [nm] | 89 ± 9
 - $\xi_0(0)$ [nm] | 7.0 ± 0.7
 - T_c [K] | 18.0 ± 0.1
 - $\Delta/k_B T_c$ | 2.4 ± 0.1
 - l [nm] | 3.7 ± 0.5
 - R_{res} [nΩ] | 9 ± 2
 - $\lambda_{eff}(0)$ [nm] | $(1.5 \pm 0.2) \times 10^2$
 - $\xi_{GL}(0)$ [nm] | 3.2 ± 0.2
 - κ | 47 ± 6
 - $B_c(0)$ [T] | 0.47 ± 0.06
 - $B_{c1}(0)$ [T] | 0.027 ± 0.005
 - $B_{sh}(0)$ [T] | 0.33 ± 0.05

- Good agreement with literature values for ideal Nb$_3$Sn
- See paper for derivations

Fits to Material Parameters

- **Surface Resistance vs. Temperature**
 - $T_c = 18.000$ K
 - Δ = 2.449
 - $l_{onDepth}$ = 885.0 Ang,
 - $\xi_{cohLength}$ = 110.0 Ang
 - RRR = 0.6218
 - $R_0 = 9.358e-009$ Ohm

S. Posen - First Cavity Results from the Cornell Nb$_3$Sn Program
• B_{c1} of Nb$_3$Sn sample measured directly via μ-SR by Anna Grassellino et al.

• $B_{c1} \sim 20$-30 mT agrees with cavity measurement
Cornell Nb$_3$Sn Cavity and B_{c1}

B_{c1} range: 27 ± 5 mT

Well above B_{c1} without strong Q slope!
\Rightarrow Energy barrier keeps Meissner state metastable, even with small ξ of Nb$_3$Sn.

B_{c1} is NOT a fundamental limitation!
Conclusions

• **Current status**: Nb$_3$Sn is **now a promising alternative SRF material** for certain future accelerators: Cornell cavity demonstrated at 4.2 K, usable gradients ~12 MV/m, Q_0 of 10^{10}, 20 times higher than Nb
 – Q-slope seen in previous cavities not a fundamental problem

• **Near future**: fix high performing but defect limited cavity, or coat new one—expect even higher gradients

• **Longer Term R&D Plan**: Develop **surface preparation methods** for Nb$_3$Sn to push performance (as has been done in Nb over many years)

• **Eventual Hope**: Prevent non-fundamental limitations to reach fields close to **ultimate limit**, $B_{sh} \sim 400$ mT