
Frequency Map Analysis at CesrTA

J. Shanks

I. FREQUENCY MAP ANALYSIS

A. Overview

The premise behind Frequency Map Analysis (FMA) is relatively straightforward. By sampling turn-by-turn (TBT)
data (typically 2048 turns) across a grid in position-space, one can map the coordinates (x, y) to a point (Qx, Qy) in
frequency-space. This mapping is done by an interpolated FFT on the first 1024 turns of the TBT data. For stable
orbits, the tune should be well-established after 1024 turns. One can consider the tune shift between the first and
last 1024 turns of TBT data as a comment on the stability of the orbit. If the tune shift is relatively large (∼ 0.1),
the particle’s motion is chaotic and represents an unstable orbit.

The large amount of information from FMA can be analyzed in two ways. First, one can plot the data as a 2D
histogram in (x, y)-space, with a color scale to indicate the magnitude of tune shift between the first and last half
of TBT data. This amounts to a dynamic aperture (DA) plot, where the boundary of the stable region indicates an
estimate of the dynamic aperture of the machine.

Second, one can use the first half of TBT data for the initial tunes (Q
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y ) and use these values as the axes in

frequency-space. The data can then be plotted as a scatter plot, with a color scale indicating the tune shift between
the first and second half of TBT data.

Both representations of the FMA are Poincaré surfaces, taken at an arbitrary starting position s=0 in the ring.
These two interpretations are equivalent, and one of the primary goals of frequency mapping is to determine how one
surface maps onto the other.

When plotting the frequency map and dynamic aperture, we use a “diffusion index” D, defined as:
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In other words, D is the RMS tune shift between the first and second half of the TBT data.

B. Features in Frequency Space

1. Non-Definite Torsion and Directions of “Fast Escape”

Many of the dominant features in frequency maps result from properties of the torsional matrix M. Laskar goes
through the details in his paper, but we will briefly discuss it here. Define M as:

M ≈
(
∂2H0(I)

∂I2

)
(2)

where I is the amplitude (normalized?), and H0 is the integrable Hamiltonian. (See Laskar’s formalism [1] for
further detail)

This 2 × 2 Jacobian matrix is equivalent to a generalization of the amplitude-dependent tune shift (neglecting
synchrotron oscillations). If the torsion matrix M is a matrix describing a definite quadratic form, solutions exist with
finite time stability that do not exist if M describes a non-definite torsion. If the torsion is non-definite, then we will
see directions of “fast escape” in our frequency map.

If we let M−1 =

(
a c
c b

)
and V = (x, y), then the vector V is an isotropic direction (leading to a direction of

fast escape) if V TM−1V = ax2 + 2cxy + by2 = 0. The punchline is this: if det(M) > 0, the quadratic form is
definite and no isotropic directions exist– that is, no directions of fast escape exist and the motion remains bounded.
If det(M) < 0, two isotropic directions emerge which act as asymptotes for frequency diffusion, and fast escape may
occur.
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2. Frequency Map Folding

A fold in the frequency map occurs if det(M) changes sign in the region of the tune plane spanned by the frequency
map. The fold occurs along the line det(M) = 0, and the frequency map will have very different characteristics before
and after the fold. Before the fold, the torsion should be positive in order to ensure stability of the beam. After
the fold, the torsion will become negative, leading to directions of fast escape. It is important to ensure that under
normal operating conditions (tunes and amplitudes), one does not enter any regions where directions of fast escape
may exist.

II. SUMMARY: FMA AT OTHER FACILITIES

Frequency mapping has been performed at many other facilities, as summarized by Nadolski and Laskar in PRST:AB
[2]. The frequency maps for every machine will be drastically different, and depend strongly on the sextupole distri-
bution. A small change in sextupole strengths can radically change the map.

In order to gain some sense of scale or perspective, we can consider the footprint of other machines’ frequency
maps in (Qx, Qy)-space. Footprints can range anywhere from [0.06× 0.05] (SOLEIL, after optimization) to [1.2× 0.2]
(ESRF). It is not uncommon to see folds and directions of fast escape in frequency maps that Nadolski and Laskar
deem acceptable, as long as they occur outside the normal operating regime.

The authors also note that the dynamic aperture is overestimated by this technique, in the sense that resonance
lines will limit the DA at much smaller amplitudes than indicated by the plots. This will be discussed in more detail
in a later section.

III. FMA AT CESRTA: CTA 2085MEV 20090516

For the first part of this study we will focus on the cta 2085mev 20090516 “NORM” optics for CesrTA. We will only
consider the simplest case of an ideal lattice with a flat orbit for now. In each scenario, coordinate-space is sampled in
constant steps of 80µm over a region large enough to span the entire dynamic aperture (typically ∼ 20mm× 20mm).
2048 turns are tracked. An interpolated FFT with a Hanning window is used to determine the tunes from the first
and last 1024 turns. Each FMA job is sliced into roughly 500 parallel jobs, each job consisting of a single y-coordinate
and all desired x-coordinates. The resulting outputs are then combined for analysis in a Python script. Additionally,
an interactive Python script was used in determining how the FM maps back to coordinate space.

Two sextupole distributions are considered. The first is a simple 2-family (2fam) distribution, only optimized
to achieve the desired chromaticities. The second distribution was optimized using Bengtsson’s prescription [3] to
minimize resonances, amplitude-dependent tune shifts, and maximize dynamic aperture. Tune scans for the two
sextupole distributions are shown in figure (1).

FIG. 1: Tune scans for the two sextupole distributions being analyzed. Left: two-family (2fam). Right: optimized distribution
using Bengtsson’s formalism.
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The design working point for the 2009.05.16 lattice is (0.571, 0.628). This will be taken as the working point for
initial analysis.

A. 2-Family Sextupoles

Figure (2) shows the dynamic aperture and frequency map for the 2-family sextupoles with the original tunes.

FIG. 2: FMA for 2-family sextupole distribution, original working point of (0.571, 0.628).

The color scales are proportional between the two plots. First, some global remarks about this frequency map. The
footprint of this frequency map is roughly [0.030×0.088], which is well within the range seen in Nadolski and Laskar’s
studies. If anything, this footprint is relatively small compared to other unoptimized sextupole distributions. We do
not see any folds in this map, but there appear to be paths of fast escape along several resonances. It is interesting
to note that starting coordinates near a resonance tend to be either attracted toward or repelled from the resonance.
This phenomenon is discussed by Laskar [1].

Next, we can identify what resonances are present in the frequency map and determine how they map back to
coordinate-space. See figure (3).

It is interesting to note that the nearest matches for resonances are all offset from the simulated data by the same
amount, (0.000879, 0.000946). It is not clear at this time what caused this shift.

The resonances in figure (3) can be mapped back into coordinate space by observing significant features. To help
with this process, an interactive Python script was developed. This allows the user to select points in frequency space,
and the corresponding location in coordinate space is highlighted. See figure (4).

The node at (0.5875, 0.622) lies along the x-axis far from the working point, and therefore corresponds to the point
(13mm, 0mm) in the dynamic aperture plot. The 3Qx + 2Qy = 3 resonance is therefore the leftmost curve in this
junction, branching up and to the left toward (0mm, 8mm). The node at (0.574, 0.644) in the tune plane maps back
to (5mm, 7.5mm) in coordinate space. The 3Qy = 2 resonance maps to a horizontal line at roughly y = 11mm.

It is likely that the dynamic aperture is not nearly as large as this simulation would have one think. The 3Qx+2Qy =
3 resonance is likely strong enough to limit the dynamic aperture to approximately 13mm × 8mm, rather than
15mm× 13mm.

B. Optimized Sextupoles

Next, consider the optimized sextupole distribution. DA and FM plots are shown in figure (5).
Again, a few global remarks first. The first immediately apparent feature in the FM is the introduction of a fold

along the right edge of the map. Many lines of fast escape are evident after the fold, in the det(M) < 0 region.
The optimized distribution has a footprint of about [0.012 × 0.088]. Vertically this is nearly identical to the 2fam
distribution, however horizontally this is a factor of three smaller.

Several features can be mapped back to coordinate space. See figure (6). The fold occurs along a line stretching
vertically from (11mm, 0mm) to (14mm, 12mm), arcing to the left. This line is not visible in the DA plot. The
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3Qx + 2Qy = 3

FIG. 3: Labeling the resonances found in the FM from figure (2).

3Qy = 2 resonance line is obvious in the FM, and maps back to a distorted ellipse at y = 11mm and returning at
y = 12.5mm. The grouping of resonances around (0.571,0.646) correspond to several of the same resonances seen in
the 2fam frequency map, though again the closest rational resonances are offset from the frequency map by roughly
+0.001 in Qx.

IV. PROPOSED WORKING POINT

To further understand properties of the frequency map, a second working point should be explored. The working
point (0.578, 0.542) looks to be clear of resonances and may be a good choice for a new working point. We now repeat
the analysis for this new point. Explicit mapping between DA and FM has not been analyzed yet.

A. 2-Family Sextupoles

The dynamic aperture and frequency map for the 2fam sextupole distribution using the new working point is shown
in figure (7). The horizontal span in frequency-space has increased from 0.032 to 0.04, but the vertical span has
remained roughly the same. Several resonances are now evident that aren’t attractors or repellers, and only show up
in a color plot.

The effective dynamic aperture has drastically changed from [11mm× 7.5mm] to [5mm× 10mm].

B. Optimized Sextupoles

The dynamic aperture and frequency map for the optimized sextupole distribution using the new working point is
shown in figure (8).

Again, the dynamic aperture has drastically changed from [20mm × 7.5mm] to [10mm × 10mm]. The original
working point has a much larger region with D < −6, indicating a larger region of stability. However, the situation
is reversed when interpreting the frequency map. Although the fold is still present, the new torsion-positive region
is larger than for the original working point. By changing the working point we’ve decreased the DA slightly, while
increasing the stable region in the frequency map.
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FIG. 4: Interactive Python utility for visualizing how points in frequency space map back to coordinate space. Here, points
along the 3Qx + 2Qy = 3 resonance in the 2fam frequency map are selected, and their corresponding locations in coordinate
space are shown.

FIG. 5: FMA for optimized sextupole distribution, original working point of (0.571, 0.628).

V. SUMMARY

The techniques and analysis tools have been developed for understanding and interpreting frequency maps. It is now
possible to determine what resonances in frequency space are restricting the dynamic aperture in coordinate space.
Tolerances for paths of fast escape and folds in frequency space are not yet well understood. Further investigations
are required to understand why simulated frequency map data is offset by a constant from theoretical resonance lines.
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FIG. 6: Labeling the resonances found in the FM from figure (5). The mapping of regions (1) and (2) are shown. The fold is
not apparent on the dynamic aperture before labeling. Areas I and II are on the det(M) > 0 side of the fold, as is the working
point.

FIG. 7: FMA for 2-family sextupole distribution, with new working point of (0.578, 0.542). Vertical grid spacing is identical
to figure (2), however the horizontal span is now larger.
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FIG. 8: FMA for optimized sextupole distribution, with new working point of (0.578, 0.542). Horizontal and vertical grids are
at the same spacing as in figure (5). The dynamic aperture for the original working point has a larger region of δQ < 10−6,
therefore the new working point has a smaller stable region in coordinate space. On the other hand, the torsion-positive side
of the FM surface is significantly larger now, indicating a larger non-chaotic region in frequency space.


