P214 Formula Sheets: Prelim II

Complex numbers

$$
\begin{aligned}
& e^{i x}=\cos (x)+i \sin (x) \\
& |\underline{A}|^{2}=A_{r}^{2}+A_{i}^{2}=\underline{A}^{*} \underline{A}
\end{aligned}
$$

Basic wave relationships

$$
\begin{array}{cc}
f=1 / T & \omega=2 \pi f \\
\omega=2 \pi / T & k=2 \pi / \lambda \\
c=\lambda f & c=\omega / k
\end{array}
$$

Wave physics

Quantity	String	Sound	E\&M
Dynamical law(s)	$F_{y}= \pm \tau \frac{\partial y}{\partial x}$	$P=P_{o}-B \frac{\partial s}{\partial x}$	$\left\{\begin{array}{c}\frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t} \\ \frac{\partial x_{z}}{\partial x}=-\mu_{0} \epsilon_{0} \frac{\partial E_{y}}{\partial t}\end{array}\right.$
Wave equation	$\tau \frac{\partial^{2} y}{\partial x^{2}}=\mu \frac{\partial^{2} y}{\partial t^{2}}$	$B \frac{\partial^{2} s}{\partial x^{2}}=\rho \frac{\partial^{2} s}{\partial t^{2}}$	$\frac{1}{\mu_{0}} \frac{\partial^{2} E_{y}}{\partial x^{2}}=\epsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}}$

Electromagnetic Waves in Vacuum

$$
\begin{array}{cl}
\text { Relative Field strengths: } & |\vec{E}|=c|\vec{B}| \quad \text { (for a plane wave) } \\
\text { Direction of propagation: } & \vec{E} \times \vec{B}
\end{array}
$$

Wave equation and solutions

$$
\begin{gathered}
c^{2} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}} \\
\mp c \frac{\partial y}{\partial x}=\frac{\partial y}{\partial t} \quad \text { (pulse Eq.) } \\
y(x, t)=f(x-c t)+g(x+c t) \\
y(x, t)=h(x+c t)-h(-(x-c t)) \quad \text { reflection from fixed BC } \\
y(x, t)=h(x+c t)+h(-(x-c t)) \quad \text { reflection from free BC } \\
\text { Optics } \\
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
\end{gathered}
$$

Snell's law of refraction: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

