P214 Formula Sheets: Prelim II

Complex numbers

$e^{ix} = \cos(x) + i\sin(x)$	(x)
$ \underline{A} ^2 = A_r^2 + A_i^2 = \underline{A}$	\underline{A}^*

Basic wave relationships

 $\begin{array}{ll} f = 1/T & \omega = 2\pi f \\ \omega = 2\pi/T & k = 2\pi/\lambda \\ c = \lambda f & c = \omega/k \end{array}$

Wave physics				
Quantity	String	Sound	E&M	
	<u> </u>			
Dynamical law(s)	$F_y = \pm \tau \frac{\partial y}{\partial x}$	$P = P_o - B \frac{\partial s}{\partial x}$	$\begin{cases} \frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}\\ \frac{\partial B_z}{\partial x} = -\mu_0 \epsilon_0 \frac{\partial E_y}{\partial t} \end{cases}$	
Wave equation	$\tau \frac{\partial^2 y}{\partial x^2} = \mu \frac{\partial^2 y}{\partial t^2}$	$B\frac{\partial^2 s}{\partial x^2} = \rho \frac{\partial^2 s}{\partial t^2}$	$\frac{1}{\mu_0}\frac{\partial^2 E_y}{\partial x^2} = \epsilon_0 \frac{\partial^2 E_y}{\partial t^2}$	

Electromagnetic Waves in Vacuum

 $\begin{array}{ll} \mbox{Relative Field strengths:} & |\vec{E}|=c|\vec{B}| & (\mbox{for a plane wave}) \\ \mbox{Direction of propagation:} & \vec{E}\times\vec{B} \end{array}$

Wave equation and solutions

$$\begin{split} c^2 \frac{\partial^2 y}{\partial x^2} &= \frac{\partial^2 y}{\partial t^2} \\ \mp c \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial t} \quad (\text{pulse Eq.}) \\ y(x,t) &= f(x-ct) + g(x+ct) \\ y(x,t) &= h(x+ct) - h(-(x-ct)) \quad \text{reflection from fixed BC} \\ y(x,t) &= h(x+ct) + h(-(x-ct)) \quad \text{reflection from free BC} \end{split}$$

Optics

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

Snell's law of refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$