
Physics 214 Fall 2002
Assignment #4, due Sept. 26

Reading for coming lectures
Young & Freedman, Sections 21.1—21.3.

Skills to be mastered

• be able to relate the wave speed (v) to the physical parameters of the system in which the
waves are propagating: i.e., v = c ≡

√

τ/µ for a string;

• given the wave solution y(x, t), be able to get and interpret ”snapshots” y(x, t = t0) and
”segment histories” y(x = x0, t);

• understand the boundary conditions for both fixed and free ends of a string;

• be able to sketch the allowed modes for different types of boundary conditions;

• be able to determine the wavelength given a picture of a standing wave mode;

• be able to get the allowed frequencies from the allowed wavelengths;

Problems

1. A transverse wave on a string is described by y(x, t) = <e

{

Ăei(kx+ω0t)
}

, where Ă = (−0.3−0.4i)

mm, k = 1.57 m−1, and ω0 = 628 s−1.

(a) Sketch a snapshot of the string at t = 5 ms (i.e., a graph of y(x) at t = 5 ms). Start at x = 0
and show at least two complete cycles.

(b) Sketch a segment history for the particle at x = 1.0 m (i.e. a graph of y(t) at x = 1.0 m).
Start at t = 0 and show at least two complete cycles.

2. One end of a horizontal string is attached to an electrically-driven vibrator that vibrates at 120
Hz. The other end passes over a pulley and supports a 1.50-kg mass. The distance between two
adjacent nodes on the string is 24.0 cm. What is the mass of a 100-m length of the string?

3. The two waves y1 = A cos(kx + ωt) and y2 = A sin(kx−ωt + π/3) travel together on a stretched
string. Sketch snapshots of the resulting wave disturbance at t = 0 and t = π/2ω, showing at least
two complete cycles in each snapshot.

4. The E-string of a violin is 32 cm long (between the two fixed points) and has diameter 0.18 mm.
It is made of steel (ρ = 7800 kg/m3).

(a) If its fundamental frequency is 623 Hz, what is the tension τ?



(b) Suppose the string is vibrating in its fundamental mode:

y(x, t) = A sin(kx)<[ei(ωt+φ)] (1)

where A = 0.2 mm. Find the maximum net force on the segment of string between x = 3.00
cm and x = 3.01 cm. Do it in two different ways: (1) by analyzing the forces directly and (2)
by finding the maximum acceleration and multiplying by the mass of the segment. Make any
approximations that are justifiable. Your answer should be a numerical value in newtons.

(c) The violinist can make the string vibrate in a higher frequency mode (without any of the
lower frequency modes) by touching the string lightly at a node of the desired mode; this is
called playing a harmonic. Touching lightly at x = x0 ensures that y(x0, t) = 0, but the string
still vibrates on both sides of x0. In order to play a harmonic at 4984 Hz (without any lower
frequency modes), how far from the end of the string should the violinist touch it? Sketch the
resulting standing wave pattern and indicate where the violinist is touching the string.

(d) If instead the violinist presses firmly at this same point, effectively shortening the length of
the string, what fundamental frequency results? (Note that string is divided into two unequal
lengths; the part of the string that is free to vibrate is the longer of the two.)

5. A string of length L is under tension τ and has linear mass density µ. The string is fixed at one
end (x = L) while the other end (x = 0) is attached to a massless ring that can slide freely (without
friction) up and down a rod. Attached to the ring is an ideal spring that exerts a vertical force on
the ring; when the ring is at y = 0 the spring is relaxed. (See Figure 1.)
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Figure 1: Boundary condition at x = 0 due to an ideal spring. x = L is fixed.

In this problem, Kspr represents the spring constant to avoid confusion with the wavenumber
k = 2π/λ. If the spring is extremely stiff (Kspr is very large), x = 0 acts like a fixed end. If the
spring is extremely flexible (Kspr is very small), x = 0 acts like a free (slip-ring) end.

(a) Use ~F = m~a to find a relationship between the slope of the string at x = 0 and the displace-
ment y(x = 0, t) of that point (which is the same as the displacement of the ring).
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(b) In the limit Kspr →∞, the point x = 0 acts like a fixed end. What does your answer to part
(a) tell you about the motion and/or the shape of the string at x = 0 in that limit? Check
that a standing wave on the string consistent with the boundary condition for Kspr =∞ must
have the form

y(x, t) = A sin(kx) cos(ωt) (2)

where k = 2π/λ. (Assume A� λ.) What are the allowed values of λ (the normal modes) in
terms of the string length L, for a standing wave (2) to be formed on the string?

(c) In the limit Kspr → 0, the point x = 0 acts like a free end. What does your answer to (a) tell
you about the motion and/or the shape of the string at x = 0 in that limit? Check that a
standing wave on the string consistent with the boundary condition for Kspr = 0 must have
the form

y(x, t) = A cos(kx) cos(ωt) (3)

where k = 2π/λ. (Assume A� λ.) What are the allowed values of λ (i.e., the normal modes)
in terms of the string length L, for a standing wave (3) to be formed on the string?

(d) Now let the spring constant Kspr have an arbitrary value. Would any of the standing wave
solutions (2) or (3) work for the general boundary condition you derived in (a)? Why not?

Argue that a standing wave of the form

y(x, t) = A cos(kx + φ′) cos(ωt) (4)

would work in this case. Find the condition(s) that the initial phase φ′ and the wavelength λ
should satisfy if a standing wave (4) is to be formed on the string.

(e) Check that the condition(s) you derived in part (d) would give you the same results for the
allowed values of λ as parts (b) and (c) in the limits Kspr → ∞ and Kspr → 0. (You are not

asked to try to solve the conditions for λ in the general case!)
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