Physics 214 Fall 2002
 Problem Set \#5, due 10/3

Skills to be mastered

- be able to identify traveling wave solutions $f(x-c t)$ and $g(x+c t)$ and pick out the velocity;
- be able to use the general solution $f(x-c t)+g(x+c t)$ to the wave equation to find particular solutions given the initial conditions (i.e., the string shape and velocity distribution at $t=0$) and boundary conditions.

Problems

1. Figure 1 shows a pulse of height 2.4 mm traveling in the $+x$-direction on a string at $t=0$. The pulse travels at a speed of $200 \mathrm{~m} / \mathrm{s}$. Note the differing scales on the x - and y-axes. Sketch the following snapshot graphs (graphs at $t=0$), labeling the axes with numerical values (estimate when necessary). (a) The slope of the string at $t=0$. (b) The segment velocity at $t=0$. (c) $\partial^{2} y / \partial x^{2}$ at $t=0$. (d) The segment acceleration at $t=0$. (e) Is the wave equation satisfied? Explain.

Figure 1: Pulse for Problem 1.
2. (a) A pulse on a string is headed to the left toward a fixed end at $x=0$. The wave speed is $100 \mathrm{~m} / \mathrm{s}$. Figure 2 shows the pulse at $t=0$. Sketch graphs of the displacement and segment velocity of the string at $t=0.03 \mathrm{~s}$ and $t=0.05 \mathrm{~s}$. (b) Repeat part (a), but let the end at $x=0$ be free (massless, frictionless slip ring) instead of fixed.

Figure 2: Pulse for Problem 2.
3. In lecture we learned that the general solution of the wave equation in one dimension can be written as $y(x, t)=f(x-c t)+g(x+c t)$. Find an explicit expression for the solution $y(x, t)$ for the particular choice $f(u)=g(u)=A \cos k u$ of the functions f and $g(A$ is a constant). What kind of wave is this? [Hint: Rewrite $A \cos k u$ using the complex representation.] What kind of wave is this?
4. In this problem, ignore reflections from the ends of the strings (assume the ends are at $x= \pm \infty$).
(a) Consider the form of the general solution of the wave equation $y(x, t)=f(x-c t)+g(x+c t)$. What must the relationship between the functions f and g be, given the initial condition that the segment velocity $v_{y}=\partial y / \partial t$ is zero everywhere at $t=0$? (The string is instantaneously motionless at $t=0$ but it is not flat.)
(b) At $\mathrm{t}=0$, a very long string is plucked in an unusual way. The points $x=-d$ and $x=d$ are held at $y=0$ and the point $x=0$ is pulled up a distance A. Thus the string has an initial shape shown in Figure 3 and is initially motionless ($\partial y / \partial t=0$ everywhere). At $t=0$ the string is released. Sketch what the string looks like at $t=d / c$ and $t=2 d / c$. [Hint: use your result from part (a).]

Figure 3: Initial shape of the string for Problem 4(b).
(c) Consider the form of the general solution of the wave equation $y(x, t)=f(x-c t)+g(x+c t)$. What must the relationship between the functions f and g be given the initial condition that the string is initially flat $(y(x, 0)=0)$?
(d) At $t=0$, the hammer of a piano hits a piano string centered at point $x=0$. In a simplified model, the string is perfectly flat at $t=0$, but the hammer has given it an initial velocity distribution $v_{y}(x, 0)$. The wave on the piano string for $t \geq 0$ is described by $y(x, t)=f(x-c t)+g(x+c t)$, where the function $f(u)$ is sketched on Figure 4. Sketch the string's initial velocity distribution $v_{y}(x, 0)$. [Hint: use your result from part (c).]

Figure 4: The function $f(u)$ for the piano string in Problem 4(d) and 4(e).
(e) Sketch a snapshot (a graph of y vs. x) of the piano string at $t=d / c$ and at $t=2 d / c$.

