Skills to be mastered

- be able to identify traveling wave solutions $f(x - ct)$ and $g(x + ct)$ and pick out the velocity;
- be able to use the general solution $f(x - ct) + g(x + ct)$ to the wave equation to find particular solutions given the initial conditions (i.e., the string shape and velocity distribution at $t = 0$) and boundary conditions.

Problems

1. Figure 1 shows a pulse of height 2.4 mm traveling in the $+x$-direction on a string at $t = 0$. The pulse travels at a speed of 200 m/s. Note the differing scales on the x- and y-axes. Sketch the following snapshot graphs (graphs at $t = 0$), labeling the axes with numerical values (estimate when necessary). (a) The slope of the string at $t = 0$. (b) The segment velocity at $t = 0$. (c) $\partial^2 y / \partial x^2$ at $t = 0$. (d) The segment acceleration at $t = 0$. (e) Is the wave equation satisfied? Explain.

2. (a) A pulse on a string is headed to the left toward a fixed end at $x = 0$. The wave speed is 100 m/s. Figure 2 shows the pulse at $t = 0$. Sketch graphs of the displacement and segment velocity of the string at $t = 0.03$ s and $t = 0.05$ s. (b) Repeat part (a), but let the end at $x = 0$ be free (massless, frictionless slip ring) instead of fixed.
3. In lecture we learned that the general solution of the wave equation in one dimension can be written as \(y(x, t) = f(x - ct) + g(x + ct) \). Find an explicit expression for the solution \(y(x, t) \) for the particular choice \(f(u) = g(u) = A \cos ku \) of the functions \(f \) and \(g \) (\(A \) is a constant). What kind of wave is this? [Hint: Rewrite \(A \cos ku \) using the complex representation.] What kind of wave is this?

4. In this problem, ignore reflections from the ends of the strings (assume the ends are at \(x = \pm \infty \)).

(a) Consider the form of the general solution of the wave equation \(y(x, t) = f(x - ct) + g(x + ct) \). What must the relationship between the functions \(f \) and \(g \) be, given the initial condition that the segment velocity \(v_y = \partial y / \partial t \) is zero everywhere at \(t = 0 \)? (The string is instantaneously motionless at \(t = 0 \) but it is not flat.)

(b) At \(t = 0 \), a very long string is plucked in an unusual way. The points \(x = -d \) and \(x = d \) are held at \(y = 0 \) and the point \(x = 0 \) is pulled up a distance \(A \). Thus the string has an initial shape shown in Figure 3 and is initially motionless (\(\partial y / \partial t = 0 \) everywhere). At \(t = 0 \) the string is released. Sketch what the string looks like at \(t = d/c \) and \(t = 2d/c \). [Hint: use your result from part (a).]

![Figure 3: Initial shape of the string for Problem 4(b).](image)

(c) Consider the form of the general solution of the wave equation \(y(x, t) = f(x - ct) + g(x + ct) \). What must the relationship between the functions \(f \) and \(g \) be given the initial condition that the string is initially flat \((y(x, 0) = 0) \)?

(d) At \(t = 0 \), the hammer of a piano hits a piano string centered at point \(x = 0 \). In a simplified model, the string is perfectly flat at \(t = 0 \), but the hammer has given it an initial velocity distribution \(v_y(x, 0) \). The wave on the piano string for \(t \geq 0 \) is described by \(y(x, t) = f(x - ct) + g(x + ct) \), where the function \(f(u) \) is sketched on Figure 4. Sketch the string’s initial velocity distribution \(v_y(x, 0) \). [Hint: use your result from part (c).]

![Figure 4: The function \(f(u) \) for the piano string in Problem 4(d) and 4(e).](image)

(e) Sketch a snapshot (a graph of \(y \) vs. \(x \)) of the piano string at \(t = d/c \) and at \(t = 2d/c \).