Physics 214 Fall 2002 Assignment #10 (due 11/21)

Reading: Young & Freedman sections 37–2,3,4,6; 38–1,2,3,4,5,6.

- 1. Young & Freedman Problem 38-61. Add:
 - (f) Show that there are N-2 secondary ("lesser") maxima between each pair of principal maxima.
 - (g) Plot the intensity as a function of ϕ for N = 4.
 - (h) Explain the advantages of making N large in a grating.

2. A laser beam (wavelength λ) is shone on a *wide slit* (width $a = \lambda$), so that the angle between the beam and the normal to the slit plate is $\alpha = 20^{\circ}$ (see Figure 1).

Figure 1: Wide slit with an off-axis source.

(The laser is far away from the slit, so you can assume that the light arrives there in the form of *plane* waves.)

- (a) Because the light waves from the laser have to travel different distances to each point of the slit, the points along the slit act like *point sources with different phases*. Find the phase $\Phi(x)$ of a spherical wavelet emerging from a point at a distance x from the bottom of the slit, relative to the point at x = 0.
- (b) Derive a formula for the intensity $I(\theta)$ of the diffraction pattern formed on a screen placed at a distance $L \gg a$ behind the slit. *Hint:* As done in class, split the finite slit into N infinitesimal slits distance d apart (i.e., at positions x = 0, d, 2d, ...) and derive an N-slit interference formula. Then take the limit $N \to \infty$, $d \to 0$ with Nd = a.
- (c) Identify the angles (θ) of the principal maxima and all the minima and sketch a plot of the diffraction pattern on the screen.

3. Alternate derivation of the single-slit pattern. Instead of assuming a finite number N of sources and taking the limit $N \to \infty$, we just integrate. Assume the slit has width a, extending from x = -a/2 to x = +a/2 instead of from x = 0 to x = a as in Figure 1. (You get the correct answer either way, but this way makes the math slightly easier.) The pattern is viewed on a distant screen. The slit is illuminated with plane waves normal to the slit (i.e. $\alpha = 0$ in Figure 1). The electric field at the screen due to an infinitesimal slice of the slit from x to $x + \Delta x$ is

$$dE = \frac{E_0}{a} dx \ e^{ik\Delta r} \tag{1}$$

Here, E_0 is the electric field amplitude we would use for the entire slit, E_0/a is the electric field per unit width, and $(E_0/a)dx$ is the (infinitesimal) electric field amplitude at the screen due to a slice of width dx.

- (a) Explain (in words) what Δr represents. Assuming that $\Delta r = 0$ for x = 0, what is Δr in terms of x and θ ?
- (b) Integrate from x = -a/2 to x = +a/2 to add up the contributions to the amplitude at the screen from every slice. What is the amplitude at the screen as a function of θ ? What is the intensity at the screen as a function of θ ?
- 4. Young & Freedman Problem 38-53.