1 Multiple Choice

[28 points]

Each of the 4 multiple choice problems is worth 7 points.

(i) Consider the complex number z = 1/(1+i). Which point (labeled A to M, as shown) in the complex plane shown in the figure below is closest to z?

Figure 1: The complex number z on the complex plane.

$$\frac{1}{1+i}\cdot\frac{(1-i)}{(1-i)}=\frac{1-i}{2}$$

- (ii) As we slowly increase the damping term of a slightly damped simple harmonic oscillator, which of the following is correct:
 - (A) Both the resonance peak and resonance width increase
 - (B) The resonance width narrows and the resonance peak goes higher
 - (C) The resonance width increases but the resonance peak lowers
 - (D) Both the resonance peak and the resonance width decreases
 - (E) The resonance width broadens but no change in the resonance peak
 - (F) The resonance peak decreases but no change in the resonance width

(iii) One end of a horizontal string is attached to an electrically-driven vibrator that vibrates at 200 Hz. The other end passes over a pulley and supports a weight of mass 2 Kg. The distance between two adjacent nodes on the string is 50cm. What is the string mass density μ ?

(Take g to be $10m/s^2$.)

(A)
$$2 \times 10^{-2} \text{ Kg/m}$$

(B)
$$10^{-2} \text{ Kg/m}$$

(C)
$$10^{-3} \text{ Kg/m}$$

(D)
$$2 \times 10^{-4} \text{ Kg/m}$$

(E)
$$10^{-4} \text{ Kg/m}$$

(F)
$$5 \times 10^{-4} \text{ Kg/m}$$

(G)
$$5 \times 10^{-5} \text{ Kg/m}$$

$$\lambda = 1 \text{ m}$$

$$c = f \lambda = 200 \text{ m/s}$$

$$C = \sqrt{\Sigma}$$

$$M = \frac{T}{c^2} = \frac{20 \text{ N}}{(200 \text{ m/s})^2} = 5 \times 10^{-4} \text{ Kg/m}$$

(iv) Consider a string (length L) with its two ends fixed. It is vibrating at the lowest mode, that is

$$y(x,t) = A\sin(kx)\cos(wt) \tag{1.1}$$

Consider the mid-point segment of the string (at x = L/2). Its maximum speed during the string vibration is

$$(A) wL/\pi$$

(B)
$$\sqrt{wL/\pi}$$

(C)
$$\sqrt{wL/2\pi}$$

$$(D)$$
 wA

$$(F) \pi A/L$$

$$(G) \sqrt{wLA/\pi}$$

$$\frac{\partial y}{\partial t} = (A \sin kx)(-\omega) \sin \omega t$$

$$\frac{\partial y}{\partial t} = -A\omega \sin \omega t$$

$$max = A\omega$$
 ($sin = \pm 1$)

2 Standing Wave

[10 points]

Two strings of equal length L, with different densities, μ (on the right) and 4μ (on the left), are connected. Their other ends are fixed, as shown in the figure below.

Figure 2: A string composed of two segments.

Sketch the lowest frequency standing wave which has a node at the point where the two strings meet.

You may draw your sketch directly in Figure 2.

(Hint: only simple algebraic calculations needed.)

tensions + frequencies are the same
$$C = \sqrt{\frac{1}{2}}$$
 so wave speed on left = $\frac{1}{2}$ c on right $C = \lambda f$ so λ on left is $\frac{1}{2}$ of λ on right (amplitude also double on the right bot we didnit expect you to worry about that!)

Boundary Conditions 3

[20 points]

Consider a string with each of its two ends tied to a spring that can only move in the y-direction. The spring constants are K_1 (at x=0) and K_2 (at x=L). The string tension is τ .

Figure 3: A string with each end tied to a spring

Consider

$$y(x,t) = A\cos(kx + \phi)\cos(wt) \tag{3.1}$$

Derive the two boundary conditions: one at x = 0 and one at x = L. Write them in terms of τ , K_1 , K_2 , L, k and ϕ .

$$X = 0$$
 $\Sigma F_y = -K_i y + T \frac{\partial y}{\partial x} = may = 0$ subst. in $y(x,t)$

$$-K_i A \cos \varphi \cos \omega t + T(-R) A \sin \varphi \cos \omega t = 0$$

$$-K_i \cos \varphi - CR \sin \varphi = 0$$

$$-K_1\cos\varphi-ck\sin\varphi=0$$

$$\int_{x=0}^{\infty} \tan \phi = -\frac{K_1}{ck}$$

$$\frac{X=L}{\sum F_y = -K_2 y} - 2 \frac{\partial y}{\partial x} = 0 \text{ at } x=L$$

$$-K_2 \cos(\varphi + kL) + Ck \sin(kl + \varphi) = 0$$

$$\tan(kLt\phi) = \frac{K_2}{ck}$$

What are the values of k and ϕ in terms of L for the lowest oscillating mode in the cases where (a) $K_1 = 0$ and K_2 is infinite

free fixed

free at
$$x=0$$
 so $\frac{\partial y}{\partial x} = 0 \Rightarrow \phi = 0$ (or any multiple of π)

$$K = \frac{\pi}{2L} \quad \phi = 0$$

(b)
$$K_1 = K_2 \to 0$$
.

$$K = \frac{2T}{\lambda} = \frac{T}{L}$$

free at
$$X=0 \Rightarrow \varphi=0$$
 (or $n\pi$)

Traveling Wave vs Standing Wave 4

[20 points]

Consider a string of length L with its two ends fixed (at x = 0 and x = L). Suppose the resulting standing wave is described by

$$y(x,t) = A\sin(kx + wt + \phi) + f(x - ct)$$
(4.1)

where A is a real constant.

Express w in terms of c and k.

w=cK

Give the lowest two values of k in terms of L.

Give the explicit form of the function f(x-ct) in terms of A, k, ϕ and c.

(Hint: Either go to the complex plane, or use a trigonometric relation given in the formula sheet.)

f(x-ct) must be cinusoidal with same amplitude,), and frequency.

$$\Rightarrow f(x-ct) = A \sin(kx-\omega t + \varphi')$$
what's φ' ? Apply B.C. $\cot x = 0$

$$y(0,t) = 0$$
A sin $(kx-\omega t - \varphi)$

A sin
$$(\omega t + \varphi) + A$$
 sin $(-\omega t + \varphi') = 0$
true if $\varphi' = -\varphi$

5 Superposition of Traveling Waves

[20 points]

The string has a length of 4d, extending from -2d (with free boundary condition) to +2d (with fixed boundary condition). At t=0, the string is plucked in a way so that it has an initial shape as shown in the figure, and is initially motionless. At t=0, the string is released.

Sketch the shape of the string at t = d/c, 2d/c, 3d/c. Here c is the wave speed.

Figure 4: The plucked string.

What is the earliest time T (i.e., the period) that the string will again have its original shape (i.e., that at t = 0). Express T in terms of d and c.

at
$$t = \frac{4d}{c}$$
, pulses at centra but 1 inverted

" $t = \frac{8d}{c}$, " " " both inverted

" $t = \frac{12d}{c}$, " " 1 inverted

" $t = \frac{12d}{c}$, " " and neither inverted

" $t = \frac{16d}{c}$, " " and neither inverted