
March 4th, 2014

BigCouch for WMAgent
Valentin Kuznetsov, Cornell University & Seangchan Ryu, FNAL

Current status

✤ CouchDB is used for:!

✤ local WMAgents; ReqMgr, WMStats, WorkQueue!

✤ it is self-contained product capable of holding few millions
of documents!

✤ Beyond 3M docs we see large latency in views & compact
procedure, silent crashes, etc.!

✤ CouchDB code is 2-3 years old (we use 1.1.0 while official
version is 1.5.0)

Proposed solution: BigCouch

✤ To resolve scalability, stability and maintenance issues it was proposed to
evaluate BigCouch solution (Cloudant Inc.)!

✤ IBM announced to acquire Cloudant on Feb 24th.!

✤ It is highly available, fault-tolerant, clustered version of Apache CouchDB !

✤ It is standard OTP application based on Amazon Dynamo DB
implementation.!

✤ Refs: http://bit.ly/1gWtJ54, http://vimeo.com/21773600 !

✤ Transparent migration from CouchDB, i.e. no code changes

http://bigcouch.cloudant.com/
http://learnyousomeerlang.com/what-is-otp
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://bit.ly/1gWtJ54
http://vimeo.com/21773600

OTP in nutshell

✤ OTP stands for Open Telecom Platform developed by Ericsson and used in
major mobile infrastructure, e.g. T-Mobile.!

✤ It provides generic framework to manage and supervise processes in
concurrent, fault-tolerant fashion!

✤ Every process is supervised and monitored!

✤ Framework provides ability for “hot” code swapping on live systems
(i.e. no downtime for upgrade procedure), etc.!

✤ Process management (sync and async)!

✤ Provides generic server behavior, maintenance & deployment

Dynamo DB concept

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

BigCouch status

✤ Initial spec was written by A. Melo, I extended and build BigCouch
RPM!

✤ PR: https://github.com/cms-sw/cmsdist/pull/352!

✤ Standard cmsweb deploy/manage scripts!

✤ PR: https://github.com/dmwm/deployment/pull/106!

✤ BigCouch can run on single node or we can form a cluster!

✤ We can substitute CouchDB with BigCouch without any code
change and setup replication between the two

https://github.com/cms-sw/cmsdist/pull/352
https://github.com/dmwm/deployment/pull/106

BigCouch setup

node1 node2

shard1

shard2

shard3

keys!
1-100

keys!
101-200

keys 201-300

shard1

shard2

shard3

keys!
1-100

keys!
101-200

keys 201-300

✤ Data are replicated between nodes!
✤ Each shard keeps some portion of the data!
✤ BigCouch provides consistent hashing!
✤ Nodes can come and go and your requests will always answered

BigCouch setup, cont’d

✤ Q: control number of shards over which a DB will be spread, specified at DB creation!

✤ N: number of redundant copies of each document, specified at DB creation!

✤ R: read quorum constant, i.e. #docs copies that must be read before a read request is ok, can be
specified at query time!

✤ W: write quorum constant, i.e. #docs copies that must be saved before document is “written”, can be
specified at write time. W=1 maximize throughput, W=N maximize consistency

Create a database comprised of 32 partitions where each document is stored 3 times !
curl -X PUT http://127.0.0.1:15984/test_db?n=3&q=32

doc1, …
doc1, …

doc1, …

docY, …

docX, …
docX, …

docX, …

docY, …
docY, …

doc1

node1

doc1, …
doc1, …

doc1, …

docY, …

docX, …
docX, …

docX, …

docY, …
docY, …

node2
query

replication

docX

docY

127.0.0.1:15984/db?n=3&q=32

BigCouch views

✤ BigCouch is not so differ from CouchDB for doc retrieval, i.e. it
is based on Map-Reduce paradigm!

✤ Views are built locally on each node, for each DB shard!

✤ large number of shards reduces latency on view performance!

✤ Mergesort at query time using exactly one copy of each shard!

✤ Run a final re-reduce on each row if view has reduce!

✤ It is possible to see feeds via _changes

BigCouch cluster

✤ BigCouch provides ability to form a cluster form BigCouch nodes!

✤ Configure firewall rules (via iptables) to support RPC communication between Erlang nodes!

✤ iptables -I INPUT -s $host -p tcp --dport 4369 -j ACCEPT!

✤ iptables -I INPUT -s $host -m state --state NEW -m tcp -p tcp --dport 9100:9105 -j ACCEPT!

✤ Inform nodes about neighbors (admin port 15986)!

✤ curl -X PUT http://127.0.0.1:15986/nodes/bigcouch@host.com -d {}!

✤ Inject a document and it will be replicated to participated nodes (db port 15984):!

✤ curl -X PUT http://127.0.0.1:15984/db/doc_1 -H content-type:application/json -d '{"a":1,"b":2}'!

✤ Fetch document from any participated node, e.g. !

✤ curl http://127.0.0.1:15984/db/doc_1

http://127.0.0.1:5984/db/doc_1

BigCouch tests

curl http://127.0.0.1:15984/_membership
{“all_nodes":["bigcouch@188.184.23.191","bigcouch@188.184.24.166"],!
"cluster_nodes":["bigcouch@188.184.23.191","bigcouch@188.184.24.166"]}

curl http://127.0.0.1:15984/db
{“db_name":"db","update_seq":[3,"abc"],"purge_seq":0,!
“other”:{"data_size":3538185},"doc_del_count":0,"doc_count":3440,!
"disk_size":11572040,"disk_format_version":5!
"disk_format_version":5,"compact_running":false,"instance_start_time":"0"}

✤ Setup BigCouches on two VM: das and das-dbs3!

✤ Form a cluster and inject/read docs

http://127.0.0.1:15984/_membership
mailto:bigcouch@188.184.23.191
mailto:bigcouch@188.184.24.166
mailto:bigcouch@188.184.23.191
mailto:bigcouch@188.184.24.166
mailto:no_reply@apple.com?subject=

BigCouch tests, cont’d

✤ We replicated WMAgent CouchDB:5984 content into BigCouch:15984:!

✤ curl -X PUT http://127.0.0.1:15984/wmstats!

✤ curl -H "Content-Type: application/json" -X POST http://
127.0.0.1:5984/_replicator -d '{"target":"http://127.0.0.1:15984/
wmstats","source":"wmstats"}'!

✤ We tested BigCouch by injecting 3M FWJR docs, 1M docs per 24 hours with
10 shell jobs looping over 100k docs!

✤ We run standard views with idle DB:!

✤ initial view construction took ~20min!

✤ sub-sequent calls return results within a second

WMAgent & BigCouch

✤ Only little changes were required on WMAgent side!

✤ WMAgent RPM depends on BigCouch!

✤ Adopt deploy/manage scripts!

✤ New port range allocation!

✤ WMAgent configuration changes!

✤ Setup and testing done on cmssrv101.fnal.gov

http://cmssrv101.fnal.gov

Migration plan

✤ Create official RPMs and update manage/deploy scripts [DONE]!

✤ Create wmagent-dev RPM with BigCouch dependency!

✤ Install WMAgents with CouchDB/BigCouch back-ends!

✤ Measure performance of WMAgent with BigCouch and CouchDB back-ends and
compare their performances [~1 month]!

✤ Split data into hot/cold but support writing current schema, [1-2 months]!

✤ work with data-ops to define hot/cold data!

✤ Setup BigCouch cluster on cmsweb, [1 month, once we identify resources]!

✤ work with HTTP group to define hardware requirement for BigCouch cluster

Migration plan, cont’d

✤ Replicate DBs: ReqMgr, WorkQueue, WMStats, Workload
summary O(100GB), [1 week]!

✤ Fix replicated databases, e.g. there are some content which
is missing in ReqMgr, [continuos process]!

✤ Stop services and adjust WMAgent settings to point to
BigCouch, if required perform additional replication and
clean-up, [1 week]!

✤ Turn on WMAgent with BigCouch back-end

