PORTING CLEO SOFTWARE TO LINUX*

C. D. Jones, V. Kuznetsov
Cornell University, Ithaca, NY 14853, USA

Abstract

The Linux operating system has become the platform
of choice in the HEP community. However, the migra-
tion process from another operating system to Linux can
be a tremendous effort for developers and system admin-
istrators. The ultimate goal of such a transition is to
maximize agreement between the final results of identi-
cal calculations on the different platforms. Apart from the
fine tuning of the existing software, the following issues
need to be resolved: choice of Linux distribution, devel-
opment tools (compiler, debugger, profilers etc.), compat-
ibility with third-party software, and deployment strategy.
It would be ideal to develop, run and test software using
office desktops, local farm systems, or personal laptops re-
gardless of the Linux distribution choosen. To accomplish
this task, you need to have a flexible package management
system that is able to install/upgrade/verify/uninstall the
necessary software components without particular knowl-
edge of remote system configuration and user privileges.
We discuss how Linux became the third official computing
platform of the CLEO collaboration, outlining the details
of the transition from Tru64 and Solaris operating systems
to Linux, and the software model and deployment strategy
employed.

INTRODUCTION

Existing HEP software has passed through many devel-
opment cycles, following the evolution of computer lan-
guages, hardware and operating systems. In the late 90’s,
the Linux OS was recognized as a valuable platform and
HEP experiments started porting their software to the new
operating system. But a fear factor exists due to the variety
of Linux distributions[1] and lack of support from hard-
ware vendors. Two approaches were taken, developing a
local Linux distribution [2, 3], or using a popular distri-
bution, such as RedHat, with recommendations and cus-
tomized kernels[4]. Regardless of which distribution has
been used, developers have faced many problems porting
their code to the new operating system. Fortunately, there
are a variety of open source development tools to solve
these issues. In addition to the well known gcc/gdb GNU
compiler and debugger, we found the valgrind toolkit [5] to
be very useful for profiling and debugging our code. In this
paper we describe the CLEO experience of porting exist-
ing software (780+ packages) from Solaris and Tru64 plat-
forms to Linux.

*Revised by, September 25, 2004

Choice of Linux distribution

The choice of Linux distribution may be compared to the
decision of choosing a car. There are plenty to choose from.
But it is clear that all cars will have an engine and acces-
sories that determine how comfortably you will drive. In
the case of Linux, it is a combination of a Linux kernel and
other components that make it useful. In most cases, differ-
ent Linux distributions are binary compatible, but there are
a few exceptions. For instance, the recent addition of the
NTPL! threading model to the 2.6 Linux kernel and glibc
library causes incompatibilities between distributions uti-
lizing the traditional Linux thread model and ones based
on NTPL. It is also possible that some applications com-
piled on one distribution may expect a particular version
of glibc at run time and often will not run with another.
But once you stick with one kernel line and compiler/glibc
tandem your software may be portable between different
distributions.

In CLEO, we organize our software in a distribution-
independent way to allow future upgrades and to be com-
patible with off-site Linux systems. To be able to com-
pile and run CLEO software on Linux, a specific version of
the C/C++/Fortran compilers and the associated version of
glibc is required. This does not restrict the choice of Linux
distribution, since multiple versions of the GNU compiler
and glibc can easily co-exist, although their support and
mainteinance can be a challenge.

We package all third-party software as a part of a CLEO
release. This way we avoid version incompatibilities, sim-
plify future upgrades of CLEO software and eliminate any
requirements of having them installed on remote systems.
A good example is the Tcl scripting language, which is em-
beded in our main application. It can be found on almost
every Linux distribution, but that does not gurantee that all
of them will have the same version. In addition, when it
is embeded in a C++ application, the library needs to be
compiled with the -fexception flag to enable exception han-
dling. As we found, this is not the case of the Tcl library
shipped with most Linux distributions.

By choosing this approach, we were able to install our
software on many Linux distributions, including RedHat
Linux, RedHat Enterprise Edition, Fedora, SUSE, Debian
and Fermi Linux LTS. Currently there is no strong prefer-
ence in the CLEO collaboration for which Linux distribu-
tion to use, although RedHat is mostly used at Cornell and
one of the MC farms uses Fermi Linux LTS.

'Native POSIX Threads for Linux

Software fine tuning

While porting our software from the Tru64 and Solaris
platforms to Linux, many problems were found. They can
be classified as follows:

e compiler/preprocessor/linker bugs
e STL-related bugs
e OS-specific bugs
e user-related bugs.

The advantage of using different compilers on different
platforms is to see their strong/weak features, keeping our
code robust against their bugs. In CLEO, a set of C pre-
processor bug flags and C pre-processor macros for STL
containers and iterators have been used[6]. Table 1 sum-
marizes platform-specific compiler flags used to compile
Fortran and C++ code on different platforms.

Our final goal was agreement of physics results on dif-
ferent platforms. We encounted many problems with the
track finding part of the reconstruction software. Most of
them were found in Fortran code due to round-off differ-
ences between Linux/Pentium and Solaris/UltraSparc plat-
forms. Figure 1 shows a comparison between Solaris and

0.060 ! ! ! T T Tracks OK + dy, z,, codo cuts | ! ! T
I 3 3 3 |
0.040 — + = = = —
L > 3 R 8 > J
L
0.020 — 0 a o o o -
Y o
o s v v v 3]
2 v 0 <} 0 N
0.000 L2 e, 9, W@ wE L g

Figure 1: The fraction of unmatched tracks versus pr. The
unmatched track found on only one platform (Solaris or
Linux) defined as: unmatched track identifier or tracks with
the same identifier but no hits in common.

Linux based on one million MC events, the fraction of
unmatched tracks as a function of track transverse mo-
mentum. We found around 15-20% of low momentum
tracks differ in py by ~ 1%, but systematic differences
between Solaris and Linux were smaller than the intrinstic
systematic errors in the MC. As a cross-check we analysed
Dt — K~rt7~ events and found good agreement be-
tween Solaris and Linux. This level was acceptable for
physics needs and Linux was certified as a third official
platform.

RPM as a deploy tool

In order to understand how we deploy our software to
off-site Linux systems, let us briefly describe the CLEO
software model [6], which uses a mixture of Fortran and
C++ code. Our main application depends on dynamic load-
ing of software modules. On average, each module can de-
pend on 20-30 libraries. The linking time rarely exceeds
a few minutes per module on a system with 256 MB of
RAM. However, on Linux it can be significatly improved

by using local disk due to poor performance over NFS. To
avoid run-time errors and possible mismatches of different
versions of shared modules, we embed the absolute path
of dependents into shared modules. For instance, module
dependencies may look like:

1dd shlib/GroupEventStoreModule.so

/cleo3/1ib/libProcessor.so.v02_04_00

=> /cleo3/1lib/libProcessor.so.v02_04_00
(0x00e6c000)

/cleo3/1lib/libDataHandler.so.v01_27_02

=> /cleo3/lib/libDataHandler.so.v01_27_02
(0x0074c000)

/cleo3/1ib/1ibToolBox.s0.v03_08_00

=> /cleo3/1ib/1ibToolBox.s0.v03_08_00
(0x0022£000)

libz.so.1

=> /usr/lib/libz.so.1 (0x0011d4000)

As can be seen, GroupFEventStoreModule.so depends on a
specific location of other modules and may not be portable
in binary form. Therefore, we deploy our software in a
source format.

To deploy our software off-site we decided to use the
RedHat Package Management (RPM) system, because:

e it is open source software and can be installed on any
Linux, Solaris or Tru64 platform;

e it provides basic package management tasks, such as
installing, uninstalling, verification, querying, etc.;

e it eliminates user errors during installation since all
compilation rules are included;

e it is very easy to find problems with CLEO software
on remote sites using RPM database.

To avoid user intervention in the installation process we
provide a shell script which takes care of checking the sys-
tem configuration, setting up the CLEO RPM database®
and installing the CLEO RPMs. We use a separate RPM
database for two reasons. We keep all CLEO packages
apart from the system ones and avoid problems with need-
ing system privileges. Such an approach is not only accept-
able for all system administrators, since the system RPM
database is not affected, but also convenient for users who
can install CLEO software into an arbitrary location on
their system, including their home area or special dedicated
disks.

The CLEO RPMs have been organized into logical
groups as shown in Figure 2. At the ground level there
are release infrastructure packages which set up the CLEO
release tree, and install Makefiles and setup scripts. They
are followed by a set of third-party software RPMs, such as
Qt, Mesa, ROOT, etc. Then the main application, suez, is
installed. Once this structure is set up, users are able to run

2We separate RPM database for CLEO packages from system one.

Tool/OS Tru64 Solaris Linux

compiler cxx/f77 CC/iT1 g++/g77

version Compagq v6.2/Digital X5.2 Sun WorkShop 6, v5.3 v3.2.2

debugger ladebug dbx gdb

profiler pixie quantiy/purify valgrind/cachegrind

C++ flags cxx -0 -Wall CC -instances=global g++ -I- -O -fPIC
-nopt -nocompress -KPIC -mt -O

Fortran flags {77 -O -u -static

f77 -O -u -KPIC -mt

f77 -I- -O -fPIC -MM -fno-automatic
-fno-second-underscore -finit-local-zero

Table 1: Platform specific compiler flags and development tools.

analysis
eventdisplay histogramming
data reconstruction
MC reconstruction
to generate MC

using root

MC generators using paw.hbook

to run suez

qt - mesa root 3d party software

release infrastructure

Figure 2: CLEO RPM dependency graph.

particular tasks on their system. A list of tasks includes:
4-vector MC generation, full detector MC simulation, MC
reconstruction, data reconstruction, graphics, analysis and
histogramming. It is worthwhile to mention that not all of
these are required to be installed on every system. For in-
stance, the cleo3-qt RPM is only necessary if the graphics
package, cleo3-sp, is going to be installed. Right now our
users decide which RPMs should be installed on their sys-
tem, but we plan to provide an automatic procedure to cus-
tomize user systems to perform particular tasks, e.g., to be
a MC production node or analysis workstation. Thanks to
RPM capabilities, it is possible to install different versions
or particular components of the reconstruction software on
a single Linux node. Different release versions may share
some RPMs, for instance a set of third-party packages.

As previously mentioned, we are forced to deploy source
RPMs for CLEO RPMs, although third-party RPMs are of-
fered in binary and source forms. To install CLEO RPMs,
users download the necessary pieces from an official loca-
tion and invoke the installation script. Release name, build
and install prefix paths must be specified at this point. A
full release can fit into 3GB disk space, but additional tem-
porary disk space is required during the compilation step.
Currently, a CLEO release consists of 780 packages and
it takes ~ 12 hours on a Linux/Intel/1GHz/256MB laptop
with local IDE drive to compile and install it. The exist-
ing deployment system can be further improved. It would
be desirable to have a single administrative script that can

retrieve on demand the necessary RPMs for a forthcoming
installation or upgrade of a CLEO release on a user’s sys-
tem.

General comments

One of the common tasks every developer routinely does
is debugging and profiling code. A few commercial prod-
ucts served our needs well on Solaris and Tru64 platforms,
such as Purify and Quantify from Rational (now part of
IBM). Unfortunately, the Linux version of these tools is not
usable in our framework. The PurifyPlus toolkit was ported
to Linux from Windows. Unlike the Solaris version, where
it could be embedded in any application, the Linux version
creates its own framework, requiring every package to be
part of its IDE. We found this model to be unusable and
were forced to look for alternatives. Fortunately, we found
excellent open source analog, valgrind [5], a very power-
ful debugging and profiling toolkit for Linux. It was easily
integrated into our legacy application since it does not re-
quire any recompilation or re-linking of the program to be-
ing measured, and it provides a full set of memory checks,
cache-miss profile, data-race detector and heap profiler. We
found that in some cases the valgrind toolkit is able to find
bugs which Quantify/Purify does not and vice versa.

In general we were very pleased with our transition to
the Linux OS. It certainly boosts in many ways our soft-
ware development and application performance. A good
example is the switch of our MC farm from Tru64 to
Linux. With modest hardware, it tremendously improved
event production yield. Using 28 dual CPU Xeon 2.4GHz
nodes, we were able to achive production of 12M/day
DD events and 14.5M/day continuum events. On the
software development front we were able to replace the
CLEO I data management system based on the pro-
prietary Objectivity/DB™ with the new EventStore [7],
whose implementation uses many open source software
components including very hottechnologies such as web
services.

CONCLUSIONS

Linux has proven to be a powerful platform for the HEP
community. Due to open source and rapid development

in the Linux community, many new projects have been
started. The CLEO experiment is not an exception. We
have discussed the CLEO experience of porting our soft-
ware to the Linux operating system. The physics results
produced on Linux have been found to be in good agree-
ment with Solaris. That allowed us to switch the MC pro-
duction farm from Tru64 to Linux and significantly im-
proved MC event production. In CLEO, we use a flexi-
ble RPM package management system to deploy our soft-
ware off-site. The CLEO software has been successfully
installed on many popular Linux distributions, including
RedHat Linux, RedHat Enterprise Edition, Fedora Core,
SUSE, Debian and Fermi Linux LTS. Linux has become
the most successful platform for CLEO, serving almost ev-
ery aspect of computing, including on-line calibration, MC
and reconstruction farms and finally happy users running
their favorite OS and CLEO software on their laptops.

ACKNOWLEDGEMENTS

We would like to thank Dan Riley, Gregory Sharp, Hu-
bert Schwarthoff for fixing various bugs and providing ex-
cellent technical advice. We also thank David Kreinick,
Jean Duboscq, Werner Sun for pushing the Linux port and
making the Solaris vs Linux comparison. We gratefully
acknowledge all members of CLEO collaboration for their
valuable feedback in software fine tuning during the transi-
tion to Linux.

This work was supported by National Science Founda-
tion.

REFERENCES

[1] http://www.lwn.net/Distributions/

[2] http://www-oss.fnal.gov/projects/fermilinux/
[3] http://linux.web.cern.ch/linux/

[4] http://www-clued0.fnal.gov

[5] http://valgrind.kde.org

[6] M. Lohner, C. D. Jones, “Rapid Software Development for
CLEO III”, CHEP 2000, Padova, Italy, February 2000.

[7]1 C. D. Jones, V. Kuznetsov, D. Riley, G. Sharp “EventStore:
Managing Event Versioning and Data Partitioning using
Legacy Data Formats”, see proceeding of this conference.

