CMS./

4

Data Aggregation System, an information retrieval on demand over relational
and non-relational distributed data sources

Valentin Kuznetsov (Cornell, USA), Dave Evans (FNAL, USA), Simon Metson (Bristol, UK), Gordon Ball (Imperial, UK)

Motivations ...

+ Auser wants to query different
data services without knowing
of their existence |

v

Data Aggregation System

+ A user wants to aggregate

DAS 1n nutshell

DAS provides a novel approach to aggregating data from multple
sources without applymg any requirements on data providers. Once data
1s accessible on a web DAS can handle the rest.

DAS leaves data management up to the data-providers. It 1s true that they
know better how to handle, preserve and secure their data.

DAS 1s agnostic to data content. Thanks to NoSQL. document-based

infOrmatiOn from different data [run, tlm%cﬁ, } run [trigger%y:.. J [Iumi, Iumﬁhltpath
run, run lumi

| database MongoDB we're able to store any type of meta-data documents

services

lumi

provided by data-providers.

DBS
. block, file, block.replica, block, , file, block, site, MC id :
+ A user has domain kn owledge, [ﬁ'Zﬁepﬁfa, o (58 } Site {L%%i;,eﬁer,"ﬁati:t, ’—i‘ gererator xsection

| DAS provides a free text-based query language to ease data-lookup. It

lumi, parameters,
but needs to query X services,

site pset

should be as simple as you search on Google.

using Y interfaces and deals

SiteDB

Parameter Set DB
site, admin, site.status, ..

Overview
country, node, region, .. CMSSW parameters

| DAS uses filters and aggregators to help you navigate through your data.

with Z data formats to get the
data

Service R
Service A
param1, param2, ..

DAS Query Language

DAS key
e string
Q U E RY in number
between ip addr
last datetime
list

FILTER

unique

AGGREGATION

* <expressions> | <filters> | <aggregators> or <map-reduce functions>
* <expressions> represented in a form of <key>and/or <key> <operator> <value>

* keys: dataset, block, file,; operators: =, in, between, last; values: int or string
(including patterns); filters: grep, unique, aggregators: sum, count, avg, min, max

* Examples
site=T1_CH_CERN; site=T1_" | grep site.name
* run=20853; run in [20853,20859]; run between [20853,20859]: run last 24h

* Dblock dataset=[a/b* | grep block.size | sum(block.size)

DAS performance

DAS benchmarks has been done on Linux 64-bit 8 core node w/ 16GGB of RAM.

We measured separately write and read time for different set of meta-data.

Write time has been driven by data-providers. Due to the fact that data need to be
shipped over the wire from remote source to DAS we only measured mternal insert

rates. The MongoDB back-end can handle up-to 20K docs/sec, while DAS merge time

was around HK doc/sec.

The read time benchmark has been done when DAS was populated with 50K dataset
and 500K block meta-data information. We used query patterns, e.g. dataset=/A* and

measured server response time to find a first matched record.

DAS has been developed m CMS to deal with broad variety of existing
distributed data services, majority of them are RDMS based.

DAS user interfaces

CMms

Data Aggregation System (DAS): Home | Services | Bug report | FAQ | CLI | Expert | Documentation

data in [list [%] format, (10 %] results/per page, records in [browseable '] format,

(search) (Reset)

DAS version: 0.5.1

datain [list [s] format, [10 14] results/per page, records in [browseable \4] format,

N\

DAS architecture

Invoke the same API(params) |

Updat h iodicall
paate cache periodically - DAS robot
=~~~ ————-—— - - —----------------- ~<

R Fetch popular
~~<_queries/APIs

— i — = = —
DAS DAS DAS
mapping | Map data-service merge Analytics

output to DAS

i records

i \ record query, API

I call to Analytics

r~=="> | runsum mapping aggregator

T £

o [lumidb | ; Ve

i -2 "< | < >[DAS corel< | | <

I -~ 2 . e) DAS web

L phedex Y R - CPU core RESTful interface

. —] | server

i % / DAS core| Yu

L---->| sitedb 74

—|> dbs DAS Cache server site=T1_CH_* L
Web server/ClL.1 tool to communicate w/ end-users
Cache server to handle requests flow
Cache DB to store results from data-providers
Merge DB to store aggregated results from DAS

cache

Mapping DB to keep mfo about data-providers (URls,
URNSs, expire timestamps) and DAS keys used by end-
users

Analytics DB to keep track of user requests and query

analysis

To simplify data look-up we used

(site=T1_"| grep site.name)

(search) (Reset)

datain [list +]|format, [10 3 results/per page, record .
G) Showing 110 of 16 fows Filter what you want
DAS key: site
Quer y CMSName: T1_US_FNAL_MSS
Showing 1-10 of 16 rows Record: 4be81f2687eed75f5f000032, show, hide
DAS key: site
CMSName: T1_US_FNAL_MSS {

"das_id": [4be81e7187eed75£5£000002],
" id": 4beB8l1f2687eed75£5£000032,

StorageElement: cmssrm.fnal.gov

Record: 4be81f2687eed75f5f000032, show, hide "site": |
{
"name”: "T1 US FNAL MSS"
{ z
"das_id": [4be8le7187eed75f5f000002], e iyt S i e

" id": 4beB81f2687eed75£5£000032,

1)

Presentation maps for data records, which
shows a snapshot of data content, e.g. for site
record we only show site name and SE info

Filters in form of standard UNIX pipes,

which select a sub-set of data record

Aggregators, e.g. sum, count, which allow
get snapshots of data

‘site”: | "cache id": [4be81f2687eed75f5£000030, 4be8lf2587eed7SE5£00000f],
/L. T — N\ "das": {
Jkind": "MSS, L a'a) "expire”: "1273506945.57",
technology : "dCache’, A "primary key": "site.name"”
"name”: "T1 US FNAL MSS", 3 } = X - — -
"se": "cmssrm.fnal.gov”, = } data in M format, L_'J result
il 1 Gl R T e 0p) TP % . .
9) (site=T1_*| sum(site.src_node_files)) L
{
f"cust_dest_bytes": "2.71767546431e+15",) Aggregate
"name" : "T1 US FNAL MSS",
"src node files": "7524.0 :
"cust_node bytes": "2.70470672424e+15", ¢ Showing 1-10 of 16 rows
"cust_dest files": "1503816.0", D)
“nonsrc_node_files": "0.0", function: sum
:nonsrczn:dezbsfr;tlas“g L R '-8 result: 1808184.0
noncust_dest files": "887650.0", B .
"cust_node files": "1500682.0", ‘_1: key: s't?'src—nOde—.meS
“noncust node files": "864485.0", Record: 0, show, hide
"src_node bytes": "9.1971048¢ e+l2", L
"noncust_dest bytes": "1.83602768692e+15",
"noncust node bytes": "1.82078676773e+15" {
\)éke—m—’rqmmv—qmmmmwn} IO o LRI
O —_— ’ ' FEAT 0
"das": { - A =
" ", %1992RAL04AE &I result : "1808184.0"7,
SEEpLTE b 12133082402] or "key": "site.src node files"
primary key : "site.name }
}
}

F

Avg time per DAS request (sec)

number of clients

Map-reduce functions for more
sophisticated data analysis

Data from data-providers were converted mto
common JSON data-format

Data notations has been centralized across
multiple data-services by using DAS maps, e.g.
runNumber, Run were converted mto
run_number notations.

Access random record using

OU0OM blocks, 100x of projected statistics
OUM blocks, 10x of projected statistics
O00K blocks, current # of CMS blocks

J0K datasets, current # ot CMS datasets

