
Data Aggregation System, an information retrieval on demand over relational
and non-relational distributed data sources

Valentin Kuznetsov (Cornell, USA), Dave Evans (FNAL, USA), Simon Metson (Bristol, UK), Gordon Ball (Imperial, UK)

DAS web
server

dbs

sitedb

phedex

lumidb

runsum

DAS
cache

DAS
Analytics

CPU core
DAS core

DAS core

DAS Cache server

record query, API
call to Analytics

Fetch popular
queries/APIs

Invoke the same API(params)
Update cache periodically

DAS
mapping Map data-service

output to DAS
records

mapping

pa
rs

er

site=T1_CH_*

da
ta

-s
er

vi
ce

s

DAS
merge

pl
ug

in
s

aggregator

UI

RESTful interface

DAS robot

DAS architecture

DAS performance

To simplify data look-up we used

 Presentation maps for data records, which
shows a snapshot of data content, e.g. for site
record we only show site name and SE info

 Filters in form of standard UNIX pipes,
which select a sub-set of data record

 Aggregators, e.g. sum, count, which allow
get snapshots of data

 Map-reduce functions for more
sophisticated data analysis

Data from data-providers were converted into
common JSON data-format

Data notations has been centralized across
multiple data-services by using DAS maps, e.g.
runNumber, Run were converted into
run_number notations.

DAS provides a novel approach to aggregating data from multiple
sources without applying any requirements on data providers. Once data
is accessible on a web DAS can handle the rest.

DAS leaves data management up to the data-providers. It is true that they
know better how to handle, preserve and secure their data.

DAS is agnostic to data content. Thanks to NoSQL document-based
database MongoDB we're able to store any type of meta-data documents
provided by data-providers.

DAS provides a free text-based query language to ease data-lookup. It
should be as simple as you search on Google.

DAS uses filters and aggregators to help you navigate through your data.

DAS has been developed in CMS to deal with broad variety of existing
distributed data services, majority of them are RDMS based.

! <expressions> | <filters> | <aggregators> or <map-reduce functions>

! <expressions> represented in a form of <key> and/or <key> <operator> <value>

! keys: dataset, block, file,; operators: =, in, between, last; values: int or string
(including patterns); filters: grep, unique, aggregators: sum, count, avg, min, max

! Examples

! site=T1_CH_CERN; site=T1_* | grep site.name

! run=20853; run in [20853,20859]; run between [20853,20859]; run last 24h

! block dataset=/a/b* | grep block.size | sum(block.size)

DAS Query Language

Si
te
D
B

Ph
ed

ex

Filter what you want

Aggregate

Query

DAS user interfaces

DAS benchmarks has been done on Linux 64-bit 8 core node w/ 16GB of RAM.

We measured separately write and read time for different set of meta-data.

Write time has been driven by data-providers. Due to the fact that data need to be
shipped over the wire from remote source to DAS we only measured internal insert
rates. The MongoDB back-end can handle up-to 20K docs/sec, while DAS merge time
was around 5K doc/sec.

The read time benchmark has been done when DAS was populated with 50K dataset
and 500K block meta-data information.We used query patterns, e.g. dataset=/A* and
measured server response time to find a first matched record.

DAS

MongoDB

DAS in nutshellMotivations ...

 Web server/CLI tool to communicate w/ end-users
 Cache server to handle requests flow
 Cache DB to store results from data-providers
 Merge DB to store aggregated results from DAS

cache
 Mapping DB to keep info about data-providers (URIs,

URNs, expire timestamps) and DAS keys used by end-
users

 Analytics DB to keep track of user requests and query
analysis

Access random record using

 500M blocks, 100x of projected statistics

 50M blocks, 10x of projected statistics

 500K blocks, current # of CMS blocks

 50K datasets, current # of CMS datasets

! A user wants to query different
data services without knowing
of their existence

! A user wants to aggregate
information from different data
services

! A user has domain knowledge,
but needs to query X services,
using Y interfaces and deals
with Z data formats to get the
data

block,
site

lumi

site

DBS
run, file, block, site,
config, tier, dataset,
lumi, parameters,

LumiDB
lumi, luminosity, hltpath

SiteDB
site, admin, site.status, ..

Phedex
block, file, block.replica,
file.replica, se, node, ...

GenDB
generator, xsection,
process, decay, ...

RunSummary
run, trigger, detector, ...

DataQuality
trigger, ecal, hcal, ...

run,
lumi

run

MC id

Overview
country, node, region, ..

Parameter Set DB
CMSSW parameters

run

Service E
param1, param2, ..Service D

param1, param2, ..Service C
param1, param2, ..Service B

param1, param2, ..Service A
param1, param2, ..

pset

Data Aggregation System

