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DAS operation Tradeofts Summary

shell# das_cli --query="summary dataset=/a/b/c | grep dataset.nevents" multiple data-services by using DAS maps

DAS 1s data agnostic intelligent cache and

* Query collisions: DAS does not own the data and there is no aggregalion service
transactions, we rely on query status and update it accordingly

+ DAS works with 15 distributed data-services

* their size vary, on average O(100GB ,
’ % ge Of ) It uses pluggable architecture and allows to work

+ Index choice: initially one per select key, later one per query hash with distributed data-providers without a-prior

* DAS uses 40 MongoDB collections
, , o , knowledge of data, schemas, policies and their
* Storage size: we compromise storage vs data flexibility vs naming

* caching, mapping, analytics, logging (normal, capped, gridfs cols) implementation details

conventions
* DAS inserts/deletes O(1M) records on a daily basis * Speed: we compromise simple data access vs conglomerate of Data can be aggregated in any dimensions
. o | restrictions (naming, security policies, interfaces, etc.), but we tuning-
* We operate on a single 64-bit Linux node with 8 CPUs, 24 GB of RAM up our data-service APIs based on query patterns Horizontal scale is available

and 1TB of disk space, sharding is not enabled



