cvs | Data Aggregation System, an information retrieval on demand over relational

4
/l

I and non-relational distributed data sources @;(
Valentin Kuznetsov, CMS::LHC::CERN, Cornell *

Motivations ... ™ DAS in nutshell DAS architecture

- DAS provides a novel approach to aggregating data from multple
l sources without applying any requirements on data providers. Once data invoke the same API(param) .
. . Update cache periodically DAS robot
/ i1s accessible on a web DAS can handle the rest. S - u‘\\gsgregfgg,'gf
+ A user wants to query ditferent _ DAS | q he d ors Tt hat th
data services without knowing Data Aggregation System caves dala management up to the data-providers. It1s true that they =
of their existence | know better how to handle, preserve and secure their data. mapping ‘Qﬁs merge Analytics
. . i record query, API
+ A user wants to aggregate / DAS 1s agnostic to data' content. Thanks to NoSQI. document-based o — — cal o Analytos
RunSummary run DataQuality LumiDB lal’ l}/l' - lllll : e A A
lnformatlon frOm dlfferent data [run, triggesr, detectgr, } - [trigger, ecal?hcal,y... } [Iumi, Iumint)sity, hitpath] da .383 Bba:oggtoa.DB W.edre able tO Store aIly e Of meta data dOC ents ;---—-|> lumidb a Y Y
SerV].CQS :::;, run lumi pI‘OVl & y d -pI‘OVl crs. i — § \] <->[DAS core < % - e -
. ____ | phedex q:)) -« | = CPU core - RESTful interface ser‘:’;’f
. T e g | -
+ A user has domain knowledge, oot e | ok { e e | MCid e DAS prowvides a free text-based query language to ease data-lookup. It o [sitedb ,_*g//: DAS core| Yui
lumi, parameters, ’ b o ° : —
but needs to query X services, should be as simple as you search on Google. - DAS Cache server poncn:
using Y interfaces and deals i - _pset . —
With Z data formats tO get the [site, admin, site.status, J country, node, region, ..] [CMSSW parameters] DAS uses ﬁlters aﬂd ag‘gregators tO help you nawgate through your data.
data —— Web server/CLI tool to communicate w/ end-users
—_ DAS has been developed im CERN-CMS to deal with broad variety of Cache server to handle requests tlow
existing distributed data services, majority of them are RDMS based. Cache DB to store results from data-providers

.o .o erge DB to store aggregated results from DAS
DAS @ CMS :: LHC :: CERN DAS interfaces Caz{eg DB ggregated resul D

Mappimg DB to keep info about data-providers (URls,

40 CountrleSI 172 lnStltutlonS, more then 3000 SCIentlStS f:Mb Data Aggregation System (DAS): Home | Services | Bug report | FAQ | CLI | Expert | Documentation URNS? eXplre UmeStanlpS> aIld DAS keys used by end_

users
* CMS experiment produces a few PB of real data each year and we

datain [list 4] format, [10 [4] results/per page, records in [browseable 4] format,

Analytics DB to keep track of user requests and query

collect ~TB of meta-data Gearch) (Reset) .
analysis
* CMS relies on GRID infrastructure for data processing and uses 100+ DAS version: 0.5.1 I O 1 C
computing centers word-wide g
(data in [list %] format, | 10‘B results/per page, records in [browseable 4] format, TO Slmpllfy data look_up we used
. . . site=T1_*| grep site.name (‘search) (Reset)
* CMS software consists of 4M lines of C++(framework), 2M lines of I Y
python (data management), plus Java, perl, etc. Gt) Showing 1-10 of 16 rows Filter what you want Presentation maps for data records, which
Query CMSNamo: T1_US_ FNAL MSS shows a snapshot of data content, e.g. for site
< 1 Showing 1-10 of 16 rows Record: 4be81f2687eed75f5f000032, show, hide . .
ORACLE, My5QL, 5QLite, NoSQL oA Koy sic record we only show site name and SE mnfo
CMSName: T1—95—FNAL—MSS {"das_id" : [4be8le7187eed75£5£000002],
StorageElement: cmssrm.fnal.gov " _id": 4be81f2687eed75£5£000032,
Record: 4be81f2687eed75f5f000032, show, hide "site": [. . .
D AS WO I’kﬂ OW P —— Filters in form of standard UNIX pipes,
{ % .
‘das id-: [4betieniaTeednststannony), nana": _us_rns s which select a sub-set of data record
‘site”: [::gacét.e_id": [4be81f2687eed75£5£000030, 4be8lf2587eed75£5£00000f],
e * Mongo DB ﬂ:kind": I" S e . a's‘e;:pire": '1273506945.57",
"tech{lu.)lqu ot ac e - "primary key": "site.name” .
—— ggme In l; Rl o % i data in [list [#] format, (10 [%] result Aggregators, €.g. sum, count, which allow
Anaytics Rl ite=T1_* ite. de_fil
& l I - T — ggregate
> e e e e - Showing 1-10 of 16 rows
& "cust dest files": "15038 ;.::;"L"“- S .
2 s ks rilass g gre U function: sum Map-reduce functions for more
i ::nonsrc_node_bytes"i 0.0", FU result: 1808184.0 ; . .
—— oums. ncle. filen": "1500682.0° e key: site.src_node_fles sophisticated data analysis
DAS 6 "noncust_node_files": ?'*3"% > Record: 0, show, hide
Ry ., o8 noncust, dest, bytes": "1.83602768692¢415",
o Ea C(‘o,b/s)"noncust_node_bytes" : "1.82078676773e+15" {
C 7 ' “ By e . .
\\@.\w:" / \ ""\a,,,he ::WMWM A Data from data-prowders were converted mto
\\44 a's'e:c re": "1273506945.57", :?esglt’f: et T I
4 "prl;:lary_ke;": 431‘_2':1&“_‘6. } key": "site.src node files common JSON data-fOI'Hlat
JSON Document XML Document } }
I R — -
data- . .
provider (provider) Data notations has been centralized across

DAS operation Tradeofts Summary

shell# das_cli --query="summary dataset=/a/b/c | grep dataset.nevents" multiple data-services by using DAS maps

DAS 1s data agnostic intelligent cache and

* Query collisions: DAS does not own the data and there is no aggregalion service
transactions, we rely on query status and update it accordingly

+ DAS works with 15 distributed data-services

* their size vary, on average O(100GB ,
’ % ge Of) It uses pluggable architecture and allows to work

+ Index choice: initially one per select key, later one per query hash with distributed data-providers without a-prior

* DAS uses 40 MongoDB collections
, , o , knowledge of data, schemas, policies and their
* Storage size: we compromise storage vs data flexibility vs naming

* caching, mapping, analytics, logging (normal, capped, gridfs cols) implementation details

conventions
* DAS inserts/deletes O(1M) records on a daily basis * Speed: we compromise simple data access vs conglomerate of Data can be aggregated in any dimensions
. o | restrictions (naming, security policies, interfaces, etc.), but we tuning-
* We operate on a single 64-bit Linux node with 8 CPUs, 24 GB of RAM up our data-service APIs based on query patterns Horizontal scale is available

and 1TB of disk space, sharding is not enabled

