
Data Aggregation System, an information retrieval on demand over relational
and non-relational distributed data sources

Valentin Kuznetsov, CMS::LHC::CERN, Cornell

DAS web
server

dbs

sitedb

phedex

lumidb

runsum

DAS
cache

DAS
Analytics

CPU core
DAS core

DAS core

DAS Cache server

record query, API
call to Analytics

Fetch popular
queries/APIs

Invoke the same API(params)
Update cache periodically

DAS
mapping Map data-service

output to DAS
records

mapping

pa
rs

er

	����������

da
ta

-s
er

vi
ce

s

DAS
merge

pl
ug

in
s

aggregator

UI

RESTful interface

DAS robot

DAS architecture

To simplify data look-up we used

 Presentation maps for data records, which
shows a snapshot of data content, e.g. for site
record we only show site name and SE info

 Filters in form of standard UNIX pipes,
which select a sub-set of data record

 Aggregators, e.g. sum, count, which allow
get snapshots of data

 Map-reduce functions for more
sophisticated data analysis

Data from data-providers were converted into
common JSON data-format

Data notations has been centralized across
multiple data-services by using DAS maps

DAS provides a novel approach to aggregating data from multiple
sources without applying any requirements on data providers. Once data
is accessible on a web DAS can handle the rest.

DAS leaves data management up to the data-providers. It is true that they
know better how to handle, preserve and secure their data.

DAS is agnostic to data content. Thanks to NoSQL document-based
database MongoDB we're able to store any type of meta-data documents
provided by data-providers.

DAS provides a free text-based query language to ease data-lookup. It
should be as simple as you search on Google.

DAS uses filters and aggregators to help you navigate through your data.

DAS has been developed in CERN-CMS to deal with broad variety of
existing distributed data services, majority of them are RDMS based.

DAS @ CMS :: LHC :: CERN

Si
te
D
B

Ph
ed

ex

Filter what you want

Aggregate

Query

DAS interfaces

DAS in nutshellMotivations ...

 Web server/CLI tool to communicate w/ end-users
 Cache server to handle requests flow
 Cache DB to store results from data-providers
 Merge DB to store aggregated results from DAS

cache
 Mapping DB to keep info about data-providers (URIs,

URNs, expire timestamps) and DAS keys used by end-
users

 Analytics DB to keep track of user requests and query
analysis

✦ A user wants to query different
data services without knowing
of their existence

✦ A user wants to aggregate
information from different data
services

✦ A user has domain knowledge,
but needs to query X services,
using Y interfaces and deals
with Z data formats to get the
data

block,
site

lumi

site

DBS
run, file, block, site,
config, tier, dataset,
lumi, parameters,

LumiDB
lumi, luminosity, hltpath

SiteDB
site, admin, site.status, ..

Phedex
block, file, block.replica,
file.replica, se, node, ...

GenDB
generator, xsection,
process, decay, ...

RunSummary
run, trigger, detector, ...

DataQuality
trigger, ecal, hcal, ...

run,
lumi

run

MC id

Overview
country, node, region, ..

Parameter Set DB
CMSSW parameters

run

Service E
param1, param2, ..Service D

param1, param2, ..Service C
param1, param2, ..Service B

param1, param2, ..Service A
param1, param2, ..

pset

Data Aggregation System

✤ 40 countries, 172 institutions, more then 3000 scientists

✤ CMS experiment produces a few PB of real data each year and we
collect ~TB of meta-data

✤ CMS relies on GRID infrastructure for data processing and uses 100+
computing centers word-wide

✤ CMS software consists of 4M lines of C++(framework), 2M lines of
python (data management), plus Java, perl, etc.

✤ ORACLE, MySQL, SQLite, NoSQL

DAS workflow

DAS operation

✤ Query collisions: DAS does not own the data and there is no
transactions, we rely on query status and update it accordingly

✤ Index choice: initially one per select key, later one per query hash

✤ Storage size: we compromise storage vs data flexibility vs naming
conventions

✤ Speed: we compromise simple data access vs conglomerate of
restrictions (naming, security policies, interfaces, etc.), but we tuning-
up our data-service APIs based on query patterns

Tradeoffs

Logic

 DAS is data agnostic intelligent cache and
aggregation service

 It uses pluggable architecture and allows to work
with distributed data-providers without a-prior
knowledge of data, schemas, policies and their
implementation details

 Data can be aggregated in any dimensions

 Horizontal scale is available

Summary

shell# das_cli --query="summary dataset=/a/b/c | grep dataset.nevents"

✤ DAS works with 15 distributed data-services

✤ their size vary, on average O(100GB)

✤ DAS uses 40 MongoDB collections

✤ caching, mapping, analytics, logging (normal, capped, gridfs cols)

✤ DAS inserts/deletes O(1M) records on a daily basis

✤ We operate on a single 64-bit Linux node with 8 CPUs, 24 GB of RAM
and 1TB of disk space, sharding is not enabled

