
Data Aggregation System - a system for information

retrieval on demand over relational and

non-relational distributed data sources

G. Ball1, V. Kuznetsov2, D. Evans3 and S. Metson4

1 Imperial College London, London, UK
2 Cornell University, Ithaca, New York, USA
3 Fermilab, Batavia, Illinois, USA
4 Bristol University, Bristol, UK

E-mail: gordon.ball@cern.ch, vkuznet@gmail.com

Abstract. We present the Data Aggregation System, a system for information retrieval and
aggregation from heterogenous sources of relational and non-relational data for the Compact
Muon Solenoid experiment on the CERN Large Hadron Collider. The experiment currently has
a number of organically-developed data sources, including front-ends to a number of different
relational databases and non-database data services which do not share common data structures
or APIs (Application Programming Interfaces), and cannot at this stage be readily converged.
DAS provides a single interface for querying all these services, a caching layer to speed up
access to expensive underlying calls and the ability to merge records from different data services
pertaining to a single primary key.

1. Introduction
In 2010, data taking at the CMS experiment began in earnest, with approximately 42pb−1 of
proton-proton collision data recorded at the time of writing. At full data-taking rates, this is
expected to produce around 5PB of raw and reconstructed data per year. Associated with this
is around 1TB per year of metadata, such as data locations, dataset descriptions and machine
conditions.

Each of these metadata aspects are stored into a specialised system, using a variety of different
technologies. Each provides specialised interfaces to query the specific metadata stored. In the
pre-data-taking epoch, this situation was satisfactory as most systems were used in isolation
and only then by experts. However, in the data-taking era users regularly need to perform
queries across multiple data services (for example, to look up the recorded luminosity, machine
conditions and software configuration for a particular dataset) which prove very expensive to
serve under the existing model. DAS simplifies data look-up to end users by providing a single
point of access and provides a caching layer to data services.

Although designed in the context of the CMS experiment, DAS itself does not make any
experiment-specific assumptions about the data services it handles and is generalisable to other
similar situations [1].

DAS web
server

dbs

sitedb

phedex

lumidb

runsum

DAS
cache

DAS
Analytics

CPU core

DAS core

DAS core

DAS Cache server

record query, API
call to Analytics

Fetch popular
queries/APIs

Invoke the same API(params)
Update cache periodically

DAS
mapping Map data-service

output to DAS
records

mapping

p
ar

se
r

	����������

d
at

a-
se

rv
ic

es

DAS
merge

p
lu

gi
n

s

aggregator

UI

RESTful interface

DAS robot

Figure 1. DAS architecture, showing the relationships between web server, cache server,
analytics, data services and MongoDB (cache and merge).

2. Architecture & Implementation
DAS is designed as an additional layer on top of a heterogenous ecosystem of existing CMS data
services.

The architecture of DAS was designed as a series of independent components, which can scale
from all running on a single node to multiple nodes and duplicate components, as necessary
(Fig. 1). An initial description of the architecture, choice of technology and comparison with
similar systems was given in [2]. Here we present further development of the query language
(Sec. 2.1), analytics (Sec. 2.4) and initial benchmark results (Sec. 3).

The web server handles user sessions, whether they originate from a browser or automated
scripts. Queries made here are passed onto the cache server for processing, during which time
the web server periodically polls for the current status and displays it to the user by AJAX
(Asynchronous Javascript and XML), until the request is completed. An MD5 hash of the input
query is used to identify the correct output (and hence multiple users making identical queries
will only result in a single worker thread doing the processing). Methods are provided here for
output in machine-readable formats as well as human-readable formatting.

The cache server consists of a pool of worker threads which handle the DAS queries received
from the web front-end. Each query is handled entirely by a single thread. The worker
thread first parses a text-based query from the DAS Query Language (Sec. 2.1) into an internal
representation. The query is then analysed to identify the set of data service APIs which are
relevant. The cache is checked for items of data matching the query, or data that would form
a superset of the query. If any data cannot be found, the relevant service (Sec. 2.2) is called to
fetch and transform the data, and insert it into the raw cache (Sec. 2.3). Once all the data is in
the raw cache, records sharing common keys are merged together into a single document, which
is stored in the merge cache. If any additional data processing has been specified in the query,
it is performed on the merged document before being returned.

The cache consists of one or more MongoDB [3] shards. MongoDB is a document store
which natively stores the JSON (Javascript Object Notation) documents DAS uses as its internal
representation. This is used both for the primary record stores (the raw and merged caches) and
for the ancillary databases required by DAS, such as storing the server logs, analytics data and
mapping between keys. MongoDB also provides GridFS [4], which DAS uses to store otherwise
oversize documents, typically the result of merging large numbers of raw documents together.

The choice of a document store instead of a traditional relational database was driven by the
need to be able to store and subsequently query individual members of the deeply-nested data
structures that DAS handles, the structure of which are not known until run-time. We tested
the CouchDB [5] and MongoDB document stores for this purpose; we found the latter to have
better performance in our use-case, better scalability across multiple nodes and a query model
more compatible with our own.

The analytics server provides a facility for scheduling regular tasks. The rest of DAS operates
only when triggered by user input, and although some clean-up is performed at run-time (such
as discarded expired records) it is also necessary to have a facility for running asynchronous
operations. Analytics consists of a task scheduler and a pool of workers which execute the tasks.
This is done independently of the cache server, so heavy analytics tasks will not interfere with
end-user use.

DAS assumes that the data in the cache can be recreated from the original data sources at
any time, and thus it can function with a limited amount of space by deleting old data, nor does
it require backup of this space. The design assumes the total number of records to be O(5M),
and MongoDB is capable of effectively functioning with collections of this size. Furthermore,
only a fraction would be expected to be resident in the cache at any one time.

DAS is designed as an entirely read-only system, with no ability to write data back to the
underlying services, which simplifies the requirements for authentication and validation that this
would otherwise require.

A random subset of results retrieved by DAS are examined to learn which data members are
returned by which underlying queries, so that the web interface can suggest which input DAS
keys will find the desired result.

The non-MongoDB parts of DAS are entirely written in python. Using python does come
with a performance penalty but it allows for a fast development cycle, access to a number of
useful libraries and is consistent with other CMS web projects.

2.1. DAS Query Language
DAS queries are made in a custom text-based language. Work originally centred on an extended
version of the query language already developed for the CMS Dataset Bookkeeping Service [6]
but the syntax was found unsuitable. The DAS syntax broadly resembles using pipes and
commands in a UNIX shell, albeit with entirely dissimilar implementation.

Queries are parsed using the PLY [7] parser for tokenising and lexical analysis, with a caching
layer for previously parsed queries. The query is internally represented as a python dictionary
containing the conditions and any additional operations.

A query is structured:

conditions | filters | aggregators OR map-reduce

To make a query, a user must know which DAS key describes the data they are seeking. DAS
keys describe a single logical object, descriptions of which may exist in multiple data services.
Examples of DAS keys used for CMS include dataset, run number and person. In most cases
these are the same names used by the data services, but DAS hides small differences in data
service terminologies (eg, run number is variously called runNumber and Run by different
services).

The conditions consist of one or more DAS keys, optionally followed by an operator and
operand. Examples of queries include:

city=Geneva

dataset site=institute.ac.uk

run in [123, 456]

The conditions determine the total data for the query, but since this may still be a significant
volume of data (or contain a significant number of fields of no interest to the user), further
operations can be performed on the data.

Filters are commands that either eliminate complete data records or prune data members
within a record. At this time only two are provided; grep works similarly to the UNIX
command of the same name, filtering all but the given data members from the output, and
unique eliminates duplicate records. This is implemented by converting the filter conditions
into MongoDB query format.

Aggregators are functions which run over all the selected (and filtered, if applicable) records,
summarising their contents. The basic aggregators available are simple numerical functions like
sum, count and avg, which perform the named aggregation over all data members of a given
name. Aggregation is implemented using python coroutines.

An example of a “complete” query might be:

block dataset=/a/b/c* | grep block.size | sum(block.size), max(block.size)

The set of available filters and aggregators is likely to grow in accordance with user needs. For
more complex use-cases, it is possible to run a javascript map-reduce function on the MongoDB
cache server. DAS QL does not allow functions to be specified, so such functions are written in
advance and stored in the cache, and their execution requested with an alias.

2.2. Services
Almost any source of information can be incorporated in DAS, such as an SQL database cursor,
a command called in a subshell or an HTML page scraper, but in practice most data services
used by DAS are APIs accessed over HTTP and returning data in JSON or XML format.

Each data service is described in a mapping document (supplied in YAML [8] format) which
describes the functions available, the mapping from input DAS keys to actual arguments, and
finally a mapping from the returned keys back to DAS keys. For a service accessed over HTTP
and using a standard format, adding a new service only requires this mapping.

For more complex cases, such as those for which authentication is required, or for different
source types a plugin must be written which translates DAS requests into the necessary calls,
and then transforms the output into DAS JSON documents.

The mapping document may also specify presentation information which is used to produce
more human-friendly output by mapping key names to descriptions.

When a query for which no exact match exists in the cache is received, the set of input DAS
keys is considered to determine which services and their respective APIs to invoke. If the query
consists only of keys with associated conditions, the relevant APIs are all those for which the
accepted DAS keys are either equal or a superset of the input keys. If no API matches the set
of input queries, it is decomposed into multiple sub-queries.

Before an API query is made, a check is made for existence of a superset query already in
the cache, if wildcarding is supported by the service.

2.3. Caching & Merging
Data in DAS is principally stored in two seperate collections; the raw and merged caches.

Two types of data are stored in the raw cache; the documents returned by the respective APIs
and documents describing the current status of queries. The latter serves as the central record
for a query, holding the original query, description of the APIs called, status of the processing
and a common key with all the results documents.

Once all the data for a query is available in the raw cache, a merged record is created for
each primary DAS key. Merged documents may exceed the maximum size possible for MongoDB

records, in which case they are stored using GridFS and a reference to them stored in the merged
cache instead.

2.4. Analytics
The DAS analytics system is a daemon that schedules and executes small tasks that access the
DAS document store. This can be used to perform prosaic maintainance tasks, such as cleaning
out expired data or pruning still-valid data if space becomes limited, but the main function is
to analyse the queries received by DAS to provide information to developers and to perform
automated cache optimisation.

The caching aspect of DAS is meant to reduce the latency users experience when performing
complex, cross-service queries, but since the data in question usually has TTL of less than an
hour users will relatively often find that the data they request is not in the cache and must be
fetched on demand.

The analytics system hence tries to identify the most popular user queries and ensure that
they are always resident in the cache and thus available for real-time retrieval, whatever the
actual fetch latency may have been.

It is vital to the success of DAS, both in terms of user experience and system load, that
the majority of all queries can be served from the cache. To ensure this, we must have a good
pre-fetching strategy that maintains itself based on the actions of users.

Tasks that run on the analytics system may be divided into query analysis and cache
populators. The former run infrequently, performing expensive (both in terms of processing
and MongoDB access) analysis operations. Having identified the set of queries they wish to
maintain, they spawn simpler populator tasks that schedule themselves to pre-empt each expiry
of the specified data and perform an update, until the next time the analyser runs and the
priorities may be altered.

A simple example of an analyser is designated ValueHotspot, and is designed to run every
few hours, identifying popular arguments to a given DAS key. Upon each invocation, the set
of queries issued since the last invocation which reference the specified key is identified, and a
count of each argument made. This is then combined with summary documents from previous
invocations (containing the same information for those epochs) to calculate a 30-day moving
average. The top 15% most-used arguments are selected, which based on past results represent
about 50% of all queries are then kept in the cache until the analyser next runs.

There are a large number of possible future analysis strategies (such as the time structure
throughout a week of certain types of queries, automatically pre-fetching information about new
datasets as they are released or considering a metric based on total preventible latency rather
than total numbers of calls), but some experience with actual users is needed to determine what
will actually prove useful.

3. Benchmarks
To benchmark DAS performance, we used a 64-bit linux node with 8 cores (each 2.33GhZ)
and 16GB of RAM, which we would expect to be typical of the hardware DAS would use in
production. All DAS systems and MongoDB share this node.

Testing was performed with the cache pre-populated with approximately 5×107 records (100
times the expected volume), consisting of block records from the CMS PhEDEx [9] and DBS
systems. Each block record is a JSON document with common keys, such as name, nevents,
nfiles, replica, etc. We test with up to 500 clients making requests in parallel. Each client
requests a random wildcard query, e.g. block=/a*, and fetches one random record from the
returned set (which will test the time required for DAS to parse the query and access the cache
but largely exclude the time required to serialise a large output set). No additional operations
were done during this step. Fig. 2 shows the benchmark results.

0 100 200 300 400 500
number of clients

10-3

10-2

10-1

100

101

A
v
g
 t

im
e
 p

e
r

D
A

S
 r

e
q
u
e
st

 (
se

c)

Figure 2. Benchmark showing the average latency for fetching a single randomly-selected
document from a wildcard query, with a given number of parallel clients. The cache contains
5 × 107 records. The red triangles show the performance of the complete DAS stack, and the
blue stars the time spent by MongoDB.

4. Future Work
We are currently in process of deploying DAS in the production environment for beta testing.
The main development focus at this time is to increase the scope of possible queries, both by
adding additional services and increasing the number of APIs supported for existing services.
Support currently exists to some degree for the CMS services DBS, PhEDEx, SiteDB, Tier-0,
LumiDB, RunRegistry, Dashboard and Overview. Most of these however only have a few APIs
described by the DAS mapping, and to ensure usefulness to users we need to support as many
of the queries supported by their original interfaces as possible.

Acknowledgments
This work was supported by the National Science Foundation, contract No. PHY-0757894, and
the Department of Energy of the United States of America.

This work was supported by the Science and Technology Facilities Council, UK.

References
[1] DISCOVER RSG http://drsg.cac.cornell.edu/content/drsg-pilot-projects
[2] Kuznetsov V, Evans D and Metson S 2010 The CMS data aggregation system Procedia Comp. Sci. 1 1529-37
[3] MongoDB, a scalable, high-performance, open-source, document-orientated database

http://www.mongodb.org/
[4] MongoDB GridFS http://www.mongodb.org/display/DOCS/GridFS
[5] Apache CouchDB http://couchdb.apache.org/
[6] Kuznetsov V, Riley D, Afaq A, Sekhri V, Guo Y and Lueking L 2009 The CMS DBS query language CHEP
[7] Python Lex-Yacc http://www.dabeaz.com/ply/
[8] YAML ain’t markup language http://www.yaml.org/
[9] Rehn J, Barrass T, Bonacorsi D, Hernandez J, Semeniouk I, Tuura L and Wu Y 2006 PhEDEx high-throughput

data transfer management system CHEP

