
The CMS DBS Query Language

Valentin Kuznetsov, Daniel Riley
Cornell University, Ithaca, New York, USA

Anzar Afaq, Vijay Sekhri, Yuyi Guo, Lee Lueking
Fermilab, Batavia, Illinois, USA

Abstract. The CMS experiment has implemented a flexible and powerful system enabling
users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service
(DBS) comprises a database and the services used to store and access metadata related to
CMS physics data. To this, we have added a generalized query system in addition to the
existing web and programmatic interfaces to the DBS. This query system is based on a query
language that hides the complexity of the underlying database structure by discovering the join
conditions between database tables. This provides a way of querying the system that is simple
and straightforward for CMS data managers and physicists to use without requiring knowledge
of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the
input query parser and tokenizer, followed by a query builder that uses a graph representation
of the DBS schema to construct the SQL query sent to underlying database. We will describe
the design of the query system, provide details of the language components and overview of how
this component fits into the overall data discovery system architecture.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

c© 2010 IOP Publishing Ltd 1



1. Introduction
In anticipation of collecting data at the Large Hadron Collider (LHC), the Compact Muon
Solenoid (CMS) experiment has developed a suite of sophisticated tools to collect and record
the metadata associated with the experimental data. At LHC startup, the CMS experiment
expects to collect a few PB of data each year, which will be distributed to sites around the
world where physicists will explore the fundamental interactions of our Universe. In a globally
distributed system handling enormous volumes of data, fast, efficient data look-up is a significant
challenge and also an essential ingredient for successful analysis of the data. In the CMS data
management system, the Data Bookkeeping System[1] is the authoritative record of the data
available for physics analysis. It collects information from a broad variety of workflow tools used
by CMS production teams, physics groups and individual physicists, allowing CMS researchers
to easily find the data relevant to their analyses.

2. Searching for the tool
Today there are two major technologies providing search capabilities for end-users: relational
Database Management Systems (DBMS), and Information Retrieval (IR) systems. Each of these
has its own strengths and weaknesses, which are outlined in table 1.

IR DBMS
Imprecise semantics Precise semantics
Keyword search SQL
Unstructured data Structured data
Read-mostly, occasional updates Frequent updates
Partial results (top N) Complete results

Table 1. Comparison of IR and DBMS characteristics

While these different kinds of systems are designed to address different problem domains,
in practice a blend of characteristics is often desirable. In High Energy Physics (HEP), such
merging of features is desirable in the LHC era to allow relatively unstructured access to large
volumes of structured data and metadata.

In HEP the experimental data are usually stored in many discrete files residing on disk or
tape, with the associated meta-data are stored in relational databases. Physicists, however,
are generally more comfortable with IR tools such as web search engines, so the ideal interface
to the metadata for physicists would combine the relatively unstructured queries of IR tools
with the precision semantics of DBMS query languages. In order to support such an interface,
keywords provided by the physicist (e.g., Higgs) must be mapped to a search on a specific set
of table columns in the underlying database schema and translated into an appropriate query.
In addition, our users want to search for data satisfying specific sets of conditions, selecting
only those data satisfying the criteria. For example, I want a sample of Higgs candidate events
processed with software release 1.2.3 in the range of runs between 100 and 200. Such requests
are easier to formulate using the precise semantics of DBMS query languages. These use cases
were reviewed by us[2] during the development of the CMS Data Discovery tool. We explored
a variety of user interfaces and methods to address this mixture of requirements, resulting in
a domain-specific DBS Query Language (QL) that uses a mixture of both approaches, IR and
DBMS, combining the precise semantics of a DBMS query language with the flexibility of IR
system keyword searches.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

2



3. From SQL to QL
The quantity of information stored in the CMS DBS system already presents challenges for
physicists and data managers searching for data sets with specific characteristics. Several
user interfaces were proposed to address this issue, including structured top-down approaches
where users pick characteristics from lists of known entities, such as trigger line, dataset name,
etc. While this approach, implemented using drop-down menus, was very intuitive to learn, it
rapidly encountered scaling limits as the number of entries to in the drop-down menus became
unwieldy. Management of such large lists in the browser interface presents significant challenges,
negating the conceptual simplicity of the interface. This led us to consider alternate approaches,
eventually leading to the design of DBS QL as the primary user interface for finding data in the
DBS.

The DBS QL syntax was intentionally kept very close to SQL. With some minor amendments,
this syntax naturally maps into the user mental model and was easily adopted by the CMS
community. After several iterations of user testing, we adopted the following syntax:

find key1, key2, ... where �key� �op� �value� and|or... (1)

Here find, where, and, or are reserved keywords adapted from SQL syntax1 The keys for both
selection and condition are defined in DBS QL based on standard terminology used by physicists,
e.g., dataset, file, run. These keywords are mapped into internal database table columns or
entire tables, structured as entities and their attributes. For example, the file keyword can map
directly to the file name attribute, or it can represent the file entity which maps to the file table.
The file table contains more information about files, including the size, creation time, type etc.
These can be accessed as attributes of the file entity, e.g., file.size, file.createdate, file.type. Some
attributes are present for all QL keys, e.g., createdate, createby, etc., while other attributes are
unique to certain entities, e.g., release.family.

To accommodate a variety of search criteria, DBS QL supports the usual set of boolean
operators, including >,>=, <, <=,=, like, etc., as shown by �op� symbol in Eq. 1. Since a DBS
QL query is mapped directly to SQL, our limitations query expressivity are derived from SQL.
Complex queries can be expressed using brackets and combinations of constraints.

Figure 1 represents a simplified view of the grammar that defines the syntax of the DBS
QL. In this diagram the entities (keywords) represent logical tables. Each entity has a set of
additional attributes (columns). The grammar allows any combination of entity and attribute,
however not every attribute is appropriate for every entity. Incorrect combinations are detected
by the Query Builder at query construction time, and appropriate diagnostics are provided to
the end-user with the precise position of the error. Aggregation functions, such as sum and
count, are also supported.

Note that the DBS QL grammar does not include any explicit join operation. This syntax
gives us great flexibility to construct arbitrary queries against the DBS using published DBS
QL keys. To translate these queries into standard SQL, we define an external mapping between
tables and graph nodes using Dijkstras shortest path algorithm to find the join conditions implied
by the user’s query. This is discussed in detail in the next section.

4. DBS QL architecture
The DBS design uses the well-known 3-tier architecture. The server code is implemented using
Java Servlets in a Tomcat container. The details have been discussed elsewhere[1] and will not
be covered here.

DBS QL was first prototyped in Python and subsequently re-implemented in Java using the
ANTRL parser generator. The architecture is shown in Fig. 2. At compile time, ANTLR[4]

1 Except for the find special keyword we used all SQL keywords, e. g. between, in, etc.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

3



find

keywords

keyword

constraints

where

. (dot)

entity

like

>

=

and

or

constraints

attribute

value

keywords

, (comma)

keyword

entity

keyword

<

Figure 1. DBS QL grammar.

Grammar
xml

ANTRL

Parser Lexer

Input Query

Database
Schema 
Graph

Query
Builder

Generated 
SQL Query

Parser

Lexer

Compile time

DB

Run time

Figure 2. DBS QL architecture.

processes the DBS QL grammar description to generate the language parser and lexer. When
a query is processed, the parser and lexer tokenize the DBS QL query, which is then translated
into an SQL query by the query builder. One drawback of this scheme is that entity and

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

4



attribute names are part of the DBS QL grammar, so changes to the database schema may
require corresponding changes to the language grammar.

In order to discover the joins implicit in DBS QL queries, the database schema is represented
as a weighted directed graph with nodes mapped to tables and edges representing relationships
between tables[5]. The Query Builder uses Dijkstras shortest path algorithm to determine the
least-weight path from one table to another and resolve multi-path ambiguities. The chosen path
is used to construct the table joins in the final SQL query. For example, figure 3 shows database
tables T1 through T4 where edges between the tables represents the relationships between the
tables.

T1

T2

T4

T3

1 4

1

2

Figure 3. A graph illustrating different paths between tables. The numbers are weights assigned
to each possible table join, from which the least-cost path is computed. For example, the shortest
path from table T1 to T4 is T1 → T2 → T3 → T4 with total weight of 4. The shortest path
from table T4 to T1 is T4 → T2 → T1, with total weight of 5, because the path from T3 to T2
is prohibited (infinite weight).

Where ambiguities arise between two or more paths with identical cost, the edge weights are
manually adjusted to remove the ambiguity, guided by concrete use cases.

Since DBS QL hides all explicit relationships between tables and does not expose the actual
table names, users may specify any combination of entities and attributes in their queries.2 These
are mapped to table, columns, keys and joins according to shortest connecting path found by
the Query Builder in the schema graph. All necessary joins, keys and intermediate tables are
found as part of the graph traversal. In the aforementioned example 3, if the user specified

find key1, key4 where ...

where key1, key4 map to T1 table and T4 tables respectively, the Query Builder determines the
shortest path T1→T2→T3→T4 and adds the intermediate tables and join conditions to form
the final SQL query.

This process can be illustrated via an example translation of a DBS QL query into SQL. A
user wants the answer to the following question: I want to find the number of files and their
total size for all files which belong to a dataset where the dataset name begins with the string
“Online” and the run number is less then 224. In addition I want to restrict the query to files
with size less then 10. This question can be expressed in DBS QL as simply as

find count(file), sum(file.size) where
file.size > 10 and run < 224 and dataset = Online*

One measure of how well our query language fits the mental model of our users is how easily and
intuitively the informal query translates into DBS QL. From this, the Query Builder constructs
the following SQL expression:
2 A time limit is applied to the evaluation of the generated SQL queries in order to avoid long running queries
from loose query conditions.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

5



SELECT COUNT(DISTINCT COUNT_SUB_Files) AS COUNT_Files,
Files_FileSize AS Files_FileSize
FROM (SELECT DISTINCT Files.LogicalFileName AS COUNT_SUB_Files

,Files.FileSize AS Files_FileSize
FROM Files
JOIN FileRunLumi ON FileRunLumi.Fileid = Files.ID
JOIN Runs ON Runs.ID = FileRunLumi.Run
WHERE Files.FileSize > :p0

AND Runs.RunNumber < :p1
AND Files.Block IN
(SELECT Block.ID FROM Block
WHERE upper(Block.Path) LIKE upper(:p2) )

AND FileRunLumi.Fileid = Files.ID
AND FileRunLumi.Run = Runs.ID

) sumtable GROUP BY Files_FileSize
<p0>10</p0> <p1>224</p1> <p2>Online%</p2>

(where p0, p1 and p2 specify Oracle variable bindings3). By default we use JOIN relationships
between all tables where associative constrains exist, either via unique key or foreign key
relationships, but in some cases “LEFT OUTER JOIN” is more appropriate. Aggregation
is done via sub-queries.

The ordering may also be specified in DBS QL via order by expressions, e.g.,

find dataset where run > 100 order by run desc

In this example, the relationship between dataset and run must be discovered to allow proper
ordering. We also support a variety of time-stamp formats, e.g.,

find file where file.createdate = 2007-04-20 11:27:21 CDT
or file.moddate > 2008 or run = 234

This is a very convenient feature for an international collaboration. All such rules are easy to
implement and adjust via the ANTLR parser grammar.

In some cases auto-generated queries have poor efficiency, especially when multiple selection
keys and conditions are specified. To address this issue we are evaluating procedures for replacing
specific auto-generated queries with hand-written ones. For simple look-ups of a single entity,
e.g. find dataset or find run, we use DB views to aggregate information about the entity. These
views generate summary information using manually optimized queries For example, for the
query find dataset, we use a pre-defined summary view which finds the number of blocks and
files in the dataset, its total size, the number of events, and the integrated luminosity. This
approach increases the usability of the interface and optimizes the underlying query. Moreover,
when new information about an entity is added, we just update the underlying view, making
the change transparent.

It is worth noting that DBS QL can be adopted to any DB schema, using any standard
SQL DB back-end and programming interface. What DBS QL provides is additional mapping
between your data model and user interface by making a bridge between the user’s mental
model and the relational model of your data. Changes in the model can be accommodated
transparently via new mappings the in DBS QL grammar.

Providing this mapping enables users to make complex queries without detailed knowledge
of the underlying data model. In fact, as will be discussed in the next section, we are currently
exploring the possibility of expanding DBS QL to other CMS data services, seamlessly combining
them into a single aggregated service that can be queried through a single interface.
3 We officially support Oracle and MySQL back-ends.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

6



5. DBS QL integration with other CMS services
DBS QL has rapidly become the interface of choice to search for CMS data. Due to the simple
web interface provided by the CMS Data Discovery[3] system and its integration with DBS QL,
users are able to find their data quickly and efficiently. Over time the Data Discovery UI has
changed several times, from the original menu-driven approach using a direct connection to the
DB to the current DBS QL presentation layer using a stateless connection to any DBS instance
deployed within CMS. Our users have started adopting DBS QL for their own applications,
performing monitoring of their site usage, customizing views for data-centers and developing
easy to use new services, such as FileMover[6]. To demonstrate the simplicity and flexibility of
the DBS QL interface to the underlying services, here is a simple, but realistic, code snippet in
Python to query the run summary information for a specified dataset

import urllib, urllib2

dbsurl = "http://host/DBSServlet"
query = "find run, run.numevents, count(file) where dataset=/a/b/c"
params = {’apiversion’:’DBS_2_0_6’,’api’:’executeQuery’, ’query’: query}
data=urllib2.urlopen(dbsurl,urllib.urlencode(params).read()
result = data.read()

In addition to the Data Discovery web interface, the DBS also provides a simple stand-alone
command line tool to search data from users in their favorite environments. This tool was
written in Python, does not require any external dependencies, and can be used on any OS used
within CMS.

Moreover, the simplicity of DBS QL led us to explore a further extension of the query language
to other data-services deployed in CMS, under the umbrella of our Data Aggregation Service
(DAS). The DAS idea is novel within CMS and still under development. It allows users to place
queries across multiple CMS data services, such as the DBS, SiteDB, PhEDEx, Luminosity DB,
etc. Its syntax is based on DBS QL, naturally expanding the boundaries to other services,
providing end-users the ability to combine multiple services in simple, intuitive queries. But
instead of mapping DAS QL into a single schema graph, we are exploring how to map it to a
set of data-service APIs.

6. Summary
We have discussed a novel approach to searching CMS data, based on a flexible, intuitive and
expandable query language using semantics close to the mental model physicists use in their
daily operations. By hiding relationships and mapping well-known keys and their attributes
onto underlying data-service schema, we achieve a simple yet scalable query language. Its has
been widely adopted within CMS via the Data Discovery web interface and in various workflow
and analysis tools. Physicists are able to quickly answer their questions about data by specifying
selection keys and providing set of conditions in their query. We have demonstrated that this
approach can, in principle, be adopted to any SQL database schema and can be implemented
in any language.

7. Acknowledgements
This work was supported by the National Science Foundation and Department of Energy of
the United States of America. Fermilab is operated by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

References
[1] A. Afaq, et. al. “The CMS Dataset Bookkeeping Service”, CHEP 2007

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

7



[2] A. Dolgert, V. Kuznetsov, C. Jones, D. Riley, “A multi-dimensional view on information retrieval of CMS
data”, CHEP 2007

[3] https://cmsweb.cern.ch/dbs discovery
[4] http://www.antlr.org
[5] http://www.ics.uci.edu
[6] B. Bockelman, V. Kuznetsov “CMS FileMover: one click data”, CHEP 2009

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042043 doi:10.1088/1742-6596/219/4/042043

8


