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Abstract

This article describes the application of Kalman filter techniques for the tracking and vertexing of particles inside the

NOMAD-STAR detector, a silicon vertex detector installed in NOMAD, one of the neutrino oscillation experiments at

the CERN-SPS. The use of the Kalman filter simplifies computationally the tracking and vertex procedure for

NOMAD-STAR. The alignment of NOMAD-STAR is shown as an example of the application of the Kalman filter for

tracking purposes. The accuracy of the method is such that one obtains alignment residuals between 9 and 12 mm:
Furthermore, a preliminary measure of the impact parameter (with an RMS B36 mm) illustrates the vertexing
capabilities of this technique. r 2001 Published by Elsevier Science B.V.

PACS: 25.30Pt; 29.40Gx; 29.40Wk; 29.85.þc

Keywords: Neutrino physics; Silicon detectors; Kalman filter

1. Introduction

There is great interest in the study of neutrino
oscillations as a means to understand whether
neutrinos have mass. Two experiments at CERN,
CHORUS and NOMAD [1,2], have been search-
ing for exclusive nmðneÞ2nt oscillations by two
different methods. CHORUS searches for the t
decay topology inside an emulsion target, while
NOMAD searches for the kinematical signature of
the t decays inside a light drift chamber target. It
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has been proposed that future nmðneÞ2nt searches
could benefit from the use of a large surface silicon
tracker, either in conjunction with a passive target
or with an emulsion target, to enhance the t
detection capabilities [3–5]. The selection of the
different t decay candidates in this case is by
means of an impact parameter or a double vertex
signature. As a means to test the feasibility of
detecting nts by the use of silicon microstrip
detectors, we built an instrumented Silicon TAR-
get (NOMAD-STAR), which was installed in the
NOMAD spectrometer at the beginning of 1997
(Fig. 1).
The NOMAD-STAR detector, shown in Fig. 2,

was installed upstream of the first NOMAD drift
chamber. It consists of four layers of boron
carbide ðB4CÞ of dimensions 72� 31:5� 2:0 cm3;
amounting to a mass of 45 kg (density of
2:49 g cm3 and radiation length X0 ¼ 21:9 cm),
interleaved with layers of single-sided silicon
microstrip detectors (manufactured by Hamamat-
su Photonics, Japan), with an additional layer of
silicon detectors downstream for better track

reconstruction. The five layers of silicon detectors
have an active surface of 1:14 m2 and consist of 10
overlapping ladders, with 12 silicon microstrip
detectors per ladder, read out by low-noise VA1
chips [6]. The detectors are AC coupled, FOXFET
biased [7], passivated with silicon oxide and consist
of 641 readout strips (with a pitch of 50 mm), 640
of which are read out by the electronics. The strips
are oriented parallel to the NOMAD magnetic
field (x axis in Fig. 1). The performance of the
silicon ladders has been described in Ref. [8],
where a beam of pions with momenta higher than
100 GeV=c was used to determine that the point
resolution of a ladder of 12 detectors is about
5 mm: A general description of the NOMAD-
STAR detector can be found in Ref. [9].
The present paper will describe the application

of Kalman filtering techniques [10] for the
reconstruction of tracks inside the NOMAD-
STAR detector and its matching to tracks inside
the drift chamber target of NOMAD. It com-
mences with a statement of the problem of
reconstructing tracks and a motivation of the
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Fig. 1. The NOMAD detector with the Silicon TARget (NOMAD-STAR).
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Kalman filter as an optimal solution to this
problem (Section 2). A general description of the
Kalman filter model used for tracking and vertex-
ing in NOMAD-STAR is described in Section 3.
The alignment procedure of NOMAD-STAR is
used as an example of Kalman filter tracking in
Section 4, while a first estimate of the impact
parameter resolution of the silicon detector is used
in Section 5 as an application of the Kalman filter
vertexing.

2. Motivation

Like every other neutrino detector, NOMAD-
STAR has to achieve two contradictory goals:
produce a large number of neutrino interactions,
which requires a mass as large as possible, and
measure the products of these interactions with the
maximum precision, which would imply minimis-
ing the material budget. To separate a putative nt
interaction from the bulk of nm charged current

(CC) events, NOMAD-STAR takes advantage
that the t produced in a nt interaction has a
relatively long lifetime (ct ¼ 86:93 mm), which
results in an impact parameter distribution (see
Fig. 3) that is larger, on average, than the impact
parameter distribution of nm events. The impact
parameter (d) is defined as the projected signed
distance of the closest approach of the m� from a
nm CC interaction (or the decay track from the
one-prong decay of a t in the case of a nt CC
interaction) to the vertex produced by the remain-
ing hadronic jet. One can also define the projection
of the impact parameter onto the y-coordinate
(dy).
NAUSICAA [3] was a detector concept for a nt

appearance search, with a configuration that was
very similar to NOMAD-STAR, consisting of
layers of silicon strip detectors (50 mm readout
pitch) interleaved with 2:2 cm thick layers of a
passive graphite target with a total mass between
1–2 tons. A neutrino beam similar to the one at the
CERN-SPS served to simulate nm and nt events
inside the detector. Fig. 4 (from [3]) shows the
expected projected impact parameter distributions
(and impact parameter significance ds � dy=sy

distributions) of nm and nt CC events obtained
for NAUSICAA. The projected impact parameter
for the nt signal events is B62 mm; while the
impact parameter for the background nm CC
interactions, which is only due to measurement
errors, is centered at zero and has a RMS of
B28 mm:
Since particles traversing NOMAD-STAR may

cross several layers (with each B4C layer contain-
ing B10% of a radiation length X0 and each
silicon layer B4%X0), the effect of Coulomb

Fig. 2. Schematic of the side view of the silicon target.
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Fig. 3. Definition of the impact parameter.
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multiple scattering is very important. The design
of the detector is such that the measurement error
of the average track (B10 mm) is of the same order
as the error induced by multiple scattering. On the
other hand, multiple scattering induces an un-
avoidable correlation between the measurements
in different planes. The covariance matrix of the
measurements is no longer diagonal. Conse-
quently, to obtain the fit parameters via a w2

minimization, one has to invert a matrix of
dimension N3; where N is the number of
measurements. Furthermore, since the track model
is not linear, one has to deal with a non-linear
least-squares fit, which often requires a laborious
and not always robust iterative procedure.
Fortunately, as demonstrated by Fr .uhwirth [11]

and widely applied to high energy physics pro-
cesses [12–20] (including the general NOMAD

reconstruction [21]), the use of robust techniques,
such as the Kalman filter [10], allows one to
address the case in which the covariance matrix of
the measurements is not diagonal. Basically, what
the Kalman filter does is (a) to propagate the
parameters and their covariance matrix from one
measurement plane to the next using the track
model, while transporting the noise matrix includ-
ing the errors induced by multiple scattering,
energy losses and other random processes (predic-

tion); (b) compute the parameters by taking the
weighted mean of the propagated values and the
actual measurements in that plane (filtering) and
(c) update the fits by including the new informa-
tion (smoothing). The Kalman filter only requires
inversions of N � N matrices.
Our problem can be further simplified by the

realization that the track model for the case of
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NOMAD-STAR can be linearized without loss of
accuracy. A linearized model permits a simple,
intuitive and elegant formulation of the problem.

3. The Kalman filter for track and vertex fitting

3.1. Background

The Kalman filter is the optimal estimator of the
state vector of a linear dynamical system, since it
minimizes the mean square estimation error
[10,11]. A track in space can be described by its
5-dimensional state vector, which can be parame-
trized as follows x ¼ ðx; y;dx=dz;dy=dz; 1=pÞ;
where x; y and z are the spatial coordinates and
p is its momentum, at each of the measurement
points, defined by their z coordinate along its
trajectory. In its linear form, the evolution of the
state vector is described by the discrete system of
linear equations:

xðzkÞ � xk ¼ Fk�1xk�1 þ ok�1 ð1Þ

which defines the change in status of this vector
based on the previous measurement point xk�1:
The matrix Fk�1 is the track propagator from
measurement k � 1 to measurement k and the
random variable ok�1 describes the random noise
of the system (also called process noise). In the
tracking of particles through dense media, the
process noise can be due to multiple scattering,
energy loss or any other physical process that
might disturb the particle trajectory.
The actual measurements mk carried out at each

of the measurement points are a function of the
state vector:

mk ¼ Hkxk þ ek ð2Þ

where Hk describes the relationship between the
measured quantities and the state vector and ek

describes the measurement noise.
The Kalman filter proceeds by performing these

three distinct operations:

* Prediction, where the status of the state vector is
estimated at a future measurement point;

* Filtering, where the current estimation of the
state vector is carried out based on the previous
measurements; and

* Smoothing, where the estimation of the state
vector at a previous measurement is re-evalu-
ated with the new information of the present
measurement.

These operations will be followed in the descrip-
tion of the application of the Kalman filter to the
NOMAD-STAR detector.

3.2. Trajectories of particles in a magnetic field

The trajectory of a particle inside a constant
magnetic field is a helix. Assuming that the
magnetic field B (in Tesla) is parallel to the x

coordinate, and using the z coordinate as a
parameter, then:

r �
y00½z


½1þ ðy0½z
Þ2
3=2
¼

qB0:3

p>
ð3Þ

where r ¼ 1=R is the curvature, R the radius of
curvature (in meters), q the charge of the particle

(in units of electron charge) and p> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y þ p2z

q
the transverse momentum to the magnetic field (in
GeV=c) (see Fig. 5). NOMAD-STAR does not
have any x information so we do not consider it.
The solution to this equation is:

y ¼ yc � *q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðz � zcÞ

2

q
ð4Þ

which represents the parametric equation of the
y-projection of a helix using the z coordinate as a
parameter. The yz projection is a circle (Eq. (4)),
with (yc; zc) the center of the circle, R its radius
and *q ¼ q=jqj the sign of the charge of the particle.
The two possible solutions in Eq. (4) are such that
a negatively charged particle, *q ¼ �1; is bent
downwards (in the negative y direction) and a
positive one is bent upwards (positive y direction).
If y is the angle of the track with respect to the
z-axis in the yz plane (see Fig. 5), the coordinates
of the center of the circle are

yc ¼ y þ *qR cos y; ð5Þ

zc ¼ z � *qR sin y: ð6Þ

The equation of the circle is not linear so, to keep
the matrix notation of Eq. (2), we perform a
Taylor expansion of Eq. (4) around z ¼ 0 to
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linearize the problem:

y ¼
XN
n¼0

bnzn; ð7Þ

bn ¼
1

n!

dn

dzn
yc � *q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðz � zcÞ

2

q� �
z¼0

: ð8Þ

In principle, this expansion implies that the
matrices Hk and xk are of infinite dimension: Hk ¼
f1; z; z2; z3;yg and xk ¼ fb0;b1;b2;yg: How-
ever, only three of the bn parameters of the
expansion are independent because y only depends
on yc; zc and R: The state vector xk as defined in
Eq. (1) needs to contain only the independent
parameters, thus:

y ¼

1

z

z2

2
64

3
75 � b0 b1 b2
� 

þ
XN
n¼3

bnðb0;b1;b2Þz
n:

ð9Þ

The number of terms in the expansion to correctly
describe the particle trajectories inside NOMAD-
STAR is given by the extrapolation errors
associated to each term. Fig. 6 shows the extra-
polation errors incurred by neglecting Dj �P

N

n¼j bnln
max in the Taylor expansion, as a function

of p> and for track angles 101 and 601; assuming
B ¼ 0:4 T and that the separation between two
consecutive planes is lmax ¼ 3:6 cm: One can see

that the cubic term is still needed to ensure that the
tracking accuracy remains below the intrinsic
resolution of the silicon ladders (5 mm) [8] for
some tracks with high angles or low momenta.
NOMAD-STAR is not sensitive to further terms
in the expansion.
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The parameters of the equation: y ¼ a þ bz þ
cz2 þ dz3ðþez4Þ are as follows:

a � b0 ¼ yc � *q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2c

q
ð10Þ

b � b1 ¼
� *qzcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2c

p ð11Þ

c � b2 ¼
*qR2

2ðR2 � z2cÞ
3=2

ð12Þ

d � b3 ¼
� *qR2zc

2ðR2 � z2cÞ
5=2

¼
2bc2

1þ b2
ð13Þ

e � b4 ¼
*qR2ðR2 þ 4z2cÞ

8ðR2 � z2cÞ
7=2

¼
c3ð1þ 5b2Þ

ð1þ b2Þ2
ð14Þ

with d and e dependent on b and c: It is also worth
noting that, as the Taylor expansion was calcu-
lated for the limit z-0; it is necessary to change
the coordinate system so that the most upstream
plane of the measurement defines z ¼ 0: Now the
circle parameters can be written in terms of a; b

and c

R ¼ *q
ð1þ b2Þ3=2

2c
ð15Þ

yc ¼ a þ
ð1þ b2Þ
2c

ð16Þ

zc ¼ �
bð1þ b2Þ
2c

: ð17Þ

3.3. Kalman track filter

We now have a simplified scenario where the
state vector only has three parameters so we vary
the standard implementation of the Kalman Filter
to accommodate this circumstance. The measure-
ments mk are the measured yk positions at a given
plane at position zk (see Fig. 5).
The measurement equation (Eq. (2)) has to be

modified to include the fixed parameter which is
not explicitly included in the state vector:

mk ¼ Hkxk þ dz3k þ ek: ð18Þ

The covariance matrix of the measurement:

covfekg ¼ Vk ¼ G�1
k ð19Þ

is a 1� 1 matrix and is equal to the square of the y

resolution of the silicon detectors s2y:
The evolution of the state vector is given by

Eq. (1). In the absence of energy loss or any other
systematic perturbation to the system, this parti-
cular choice of state vector should not vary from
one plane to another. In that case we have Fk ¼ I;
the identity matrix. However, in the case of
NOMAD-STAR energy loss can be visible for
some low momentum particles. The inclusion of
energy loss in the Kalman Filter is studied in
Section 3.3.2.
The process noise, defined in Eq. (1), is included

through the covariance matrix of the extrapola-
tion, defined as

covfokg ¼ Qk: ð20Þ

This matrix has two contributions, one related
with multiple scattering and the other with energy
loss:

Qk ¼ Qmsk þQelk ð21Þ

which are studied in Sections 3.3.1 and 3.3.2,
respectively.

3.3.1. Multiple Coulomb scattering

Multiple scattering was added to the Kalman
filter for a parabolic track model in Ref. [22]. In
this section we will generalize this for a cubic
model with a more accurate multiple scattering
algorithm.
The multiple scattering theory of Moli"ere [23],

reformulated by Bethe [24], can be parametrized
by a Gaussian approximation [25], where the
width of the distribution is given by

y2ms ¼
w2c

1þ F2
1þ v

v
lnð1þ vÞ � 1

� �
ð22Þ

with

v ¼
0:5O
1� F

ð23Þ

and where

O ¼ bcq
2 s

b2
ð24Þ

is the mean number of scatters, s is the path length
of the particle and F ¼ 0:98 is the fraction of
tracks considered in the Gaussian distribution.
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The critical scattering angle [26] is

wc ¼ wccq

ffiffi
s

p
p>b

ð25Þ

with wccEð0:39612� 10�3Þ2Z0
sr=W ; q and b the

charge and speed of the incident particle, r and W

the density and molecular weight of the material,
and

bcE6702:33rZ0
se

ðZ0
x�Z0

E
Þ=Z0

s : ð26Þ

For a mixture or compound, the following
variables are defined:

Z0
s ¼

XN

i¼1

pi

Ai

ZiðZi þ 1Þ ð27Þ

Z0
E ¼

XN

i¼1

pi

Ai

ZiðZi þ 1Þ lnðZ
�2=3
i Þ ð28Þ

Z0
x ¼

XN

i¼1

pi

Ai

ZiðZi þ 1Þ ln 1þ 3:34
qZi

137b

� �2" #
ð29Þ

where Zi and Ai are the atomic number and
atomic weight of each element in the mixture, pi is
the proportion by weight of that element and N

the total number of elements. This approximation
reproduces the Moli"ere theory with an accuracy of
2%.
For an incident particle of q ¼ 71; and for the

case of boron carbide, the term ð1þ vÞ=vE1 and
then Eq. (22) becomes

y2ms ¼ ks lnð1þ BsÞ � 1½ 
 ð30Þ

with k ¼ 5:8335� 10�7=ðp2>b2Þ and B ¼
ð402685=b2Þe�4:944�10

�3=b2 (if s is in cm and p> is
in GeV=c).
We can assume that, locally, the particle

trajectory is a straight line. In that case

dðy2msÞ ¼ kds lnð1þ BsÞ �
1

1þ Bs

� �
¼ kLðzÞGðzÞdz ð31Þ

where

LðzÞ ¼ 1=cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½y0ðzÞ
2

q
ð32Þ

sðzÞ ¼
Z z

zi

Lðz0Þ dz0 ð33Þ

GðzÞ ¼ lnð1þ BsðzÞÞ �
1

1þ BsðzÞ
ð34Þ

with zi; zf the limits of each of the B4C planes.
The integral of sðzÞ can be calculated analytically:

sðzÞ ¼ R arcsin *q
z � zc

R

� �
� arcsin *q

zi � zc

R

� �h i
ð35Þ

and using Eqs. (15) and (17)

sðzÞ ¼R arcsin
2cz þ bð1þ b2Þ

ð1þ b2Þ3=2

 !"

�arcsin
2czi þ bð1þ b2Þ

ð1þ b2Þ3=2

 !#
: ð36Þ

Explicitly, the fitting parameters bn of the track
model depend on the multiple scattering angle.
The multiple scattering contribution to the covar-
iance matrix of the prediction, Qmsk ; is a 3� 3
matrix with terms:

ðQmsk Þij ¼ covyfbi; bjg

¼
Z

dbi

dy
dbj

dy
dðy2Þ

¼ k

Z zf

zi

dbi

dy
dbj

dy
LðzÞGðzÞdz ð37Þ

where the integration is needed for non-straight
particles. To calculate the terms of this matrix we
use the relation:

dbn ¼ �ðn þ 1Þbnþ1dzc; n > 0 ð38Þ

which is a consequence of Eq. (8). We also use the
continuity of yðzÞ

0 ¼ dy ¼ da þ
XN
n¼1

dbn zn

¼ da � dzc
XN
n¼1

ðn þ 1Þbnþ1 zn

¼ da � ðy0 � bÞdzc ð39Þ

and the relation between the multiple scattering
angle and y0ðzÞ ¼ tan y:

ð1þ y02Þd y ¼ dy0 ¼ �y00dzc: ð40Þ
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This last equation implies:

dzc ¼
�ð1þ y02Þ

y00 d y ¼
�LðzÞ2

y00 d y: ð41Þ

Using Eqs. (38), (39) and (41) it is straight-forward
to obtain the desired quantities:

da

dy
¼ �ðy0 � bÞ

LðzÞ2

y00 ; ð42Þ

dbn

d y
¼ ðn þ 1Þbnþ1

LðzÞ2

y00 ; n > 0: ð43Þ

Defining the following integrals:

I1 ¼
Z zf

zi

ðy0ðzÞ � bÞ2LðzÞ5

½y00ðzÞ
2
GðzÞ dz ð44Þ

I2 ¼
Z zf

zi

ðy0ðzÞ � bÞLðzÞ5

½y00ðzÞ
2
GðzÞ dz ð45Þ

I3 ¼
Z zf

zi

LðzÞ5

½y00ðzÞ
2
GðzÞ dz ð46Þ

the covariance matrix can now be written as

Qmsk ¼

kI1 �2ckI2 �3dkI2

�2ckI2 4c2kI3 6cdkI3

�3dkI2 6cdkI3 9d2kI3

2
64

3
75: ð47Þ

In the case of the cubic equation: y0ðzÞ ¼ b þ 2cz þ
3dz2 and y00ðzÞ ¼ 2c þ 6dz: These integrals are
performed numerically for each B4C plane tra-
versed. The error terms dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9d2kI3

p
and dd ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16e2kI3
p

are shown in Fig. 6. dd is found to be
negligible for the case of NOMAD-STAR.

3.3.2. Energy loss

The trajectory of particles in dense media is
affected by energy loss. For moderately relativistic
particles other than electrons, the mean rate of
energy loss is given by the well known Bethe–
Bloch formula [27].
As is shown in Eq. (3), the radius of the circle is

proportional to p>: As the particle loses energy,
the radius of the circle does not remain constant
and the trajectory is like a spiral. To simplify the
Kalman filter formalism we can assume that,
locally, the trajectory of the particle is still a circle
(Fig. 7). Energy loss changes the parameters of
the circle in a continuous way from one point to

the next. That implies the continuity of yðzÞ and
y0ðzÞ: The infinitesimal variation in the circle
parameters can be written in terms of dR; dyc
and dzc; but only one of these variations is
independent because of the two constrains dyðzÞ ¼
0 and dy0ðzÞ ¼ 0: Starting from Eq. (4), it is easy to
obtain:

dyc ¼ �ðy � ycÞ
dR

R
ð48Þ

dzc ¼ �ðz � zcÞ
dR

R
ð49Þ

which can also be intuitively extracted from Fig. 7.
The variation in the expansion coefficients is

d bn ¼
@bn

@R
dR þ

@bn

@yc
dyc þ

@bn

@zc
dzc: ð50Þ

Introducing the derivatives of Eqs. (10), (11) and
(12) into (50), and also using Eqs. (48) and (49), we
obtain:

da ¼ �
dR

R

XN
n¼2

bn znC� cz2
dR

R
; ð51Þ

db ¼ 2cz
dR

R
; ð52Þ

R

Rδ

(y  ,z  )c c’ ’

(y ,z )

Silicon plane

B  C  plane4

y=0δ
δy’=0

c

R’

z                                        zi                                                              f  

δ

δs

z

c

Fig. 7. Variation of the circle parameters induced by energy

loss.
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dc ¼ ð�c þ 3dzÞ
dR

R
C� c

dR

R
: ð53Þ

These two approximations are needed if we want
to keep the formalism of Eq. (1). Fig. 8 (b) shows
the ratio between the terms containing d and the
dominant terms up to the one containing c of
Eqs. (51), (52) and (53). In general, this ratio is
very small, thereby justifying the previous approx-
imations. Now, we have to find out how the radius
of the circle is affected by energy loss

dR

R
¼
dp>

p>
¼
dE

E
¼

b
p

dE

ds
ds: ð54Þ

At a given z; the momentum of the particle can be
calculated by integrating the Bethe–Bloch formula
for energy loss along the length of B4C

pðzÞ ¼
Z

b
dE

ds
ds ¼

Z zf

zi

b
dE

ds

LðzÞ
cos g

dz ð55Þ

where g is the angle between p and p> and b ¼
p=E: This integral can be performed numerically,
but if one assumes that the energy loss can be
approximated by a power law:

dE

ds
¼ a1pa2 ð56Þ

then the integral can be performed analytically
(assuming b constant):

pðzÞ ¼ ½p1�a2
i þ bð1� a2Þa1sðzÞ
1=ð1�a2Þ ð57Þ

with pi the momentum at the initial plane. Using
Eqs. (54), (56):

dR

R
¼

ba1
p1�a2

i cos g

LðzÞ dz

1þ ½bð1� a2Þa1 sðzÞ
=p1�a2
i

ð58Þ

We now combine Eqs. (51), (52), (53) and (58), and
integrate over the thickness of the B4C plates, to
obtain the Fk matrix of Eq. (1):

Fk ¼

1 0 �kel
R zf

zi
z2F ðzÞLðzÞ dz

0 1 2kel
R zf

zi
zF ðzÞLðzÞ dz

0 0 1� kel
R zf

zi
F ðzÞLðzÞ dz

2
664

3
775 ð59Þ

where the parameter kel is

kel ¼
ba1

p1�a2
i cos g

ð60Þ

and F ðzÞ is defined as

F ðzÞ ¼
1

1þ ½bð1� a2Þa1sðzÞ
=p1�a2
i

: ð61Þ

Notice that at first order, the variation of the state
vector between two silicon planes induced by
energy loss depends only on the quadratic para-
meter c (Eqs. (51), (52) and (53)).
We have parametrized the Bethe–Bloch formula

for B4C (with dE=ds in units of GeV cm1) using
Eq. (56), with the parameters given in Table 1 for
relevant momentum ranges. This approximation is
accurate to better than 10% below 1 GeV=c; and is
better than 0.5% between 1 and 10 GeV=c: Fig. 8
(a) shows the extrapolation error incurred if we do
not take into account energy loss in the Kalman
filter matrix (Eq. (59)).
Eq. (56) gives the mean rate of energy loss, but

in fact fluctuations in energy loss follow a Landau
distribution, which is approximately Gaussian for
thick media. These random fluctuations contribute
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Fig. 8. (a) Extrapolation error incurred by neglecting the

energy loss effect assuming a single B4C layer and a separation

between consecutive planes of 3.6 cm (only the dominant terms

up to c included) as a function of the momentum for different

angles. (b) Ratio between the d-term and the dominant terms

up to c of the extrapolation error due to energy loss.

Table 1

Parameters for power law parametrizations (Eq. (56)) of the

Bethe–Bloch energy loss formula for B4C: With these para-
meters, the energy loss is in units of GeV cm�1

Momentum range (GeV=c) a1 a2

p>o0:17 5:729� 10�4 �1.321
0:17op>o0:51 3:715� 10�3 �0.2636
p> > 0:51 4:615� 10�3 0.06141
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to the process noise and are included in the
Kalman filter mechanism through the covariance
matrix Qelk defined in Eq. (21). In NOMAD-
STAR, the energy loss effect is small, so the error
induced by this effect is even smaller and it can be
neglected when we add it in quadrature (see
Eq. (21)) to the multiple scattering error.
Having determined the track model and process

noise, the Kalman track filter can now be broken
down into its three constituent phases: prediction,
filter and smoother (see for example Ref. [11]).

3.3.3. Prediction

A prediction of the state vector xPk made at
measurement plane k is based on the state vector
information at plane k � 1:
The NOMAD drift chambers provide tracking

and momentum information for each of the
reconstructed tracks. The initial conditions for
the state vector are given by the first silicon hit
position, which defines a; and the parameters b; c

and d (Eqs. (11)–(13)) as given by the drift
chambers.
Given the covariance matrix of the state vector

as

Ck ¼ covfxPk � xkg ð62Þ

the extrapolation of the covariance matrix (the
prediction for this covariance matrix given the
knowledge of this matrix from previous steps) is

CPk ¼ FkCk�1F
T
k þQk: ð63Þ

Again, the initial conditions for the covariance
matrix are given by the resolution of the first
silicon hit and the errors in the parameters as
determined by the drift chamber fit.
The residuals of the prediction from the

measurement at plane k is

rPk ¼ mk �Hkx
P
k � dz3k: ð64Þ

The covariance of this residual is then:

RPk ¼ Vk þHkC
P
kH

T
k þ z6ks

2
dd ; ð65Þ

where s2dd is the square of the error in the
parameter d due to the uncertainty in the
measured track momentum.

3.3.4. Filter

The filtering process now incorporates informa-
tion from the measurement at plane k into the
state vector xk:

xk ¼ xPk þ Kkr
P
k ð66Þ

where Kk is known as the Kalman gain matrix that
updates the relationship between the state vector
and the measurements by including the new
information:

Kk ¼ CPkH
T
kR

�1
k : ð67Þ

The updated covariance matrix is then:

Ck ¼ ðI� KkHkÞCPk ð68Þ

with the filtered residuals:

rk ¼ mk �Hkxk � dz3k ð69Þ

and the covariance matrix of the filtered residuals:

Rk ¼ ðI�HkKkÞVk þ z6ks
2
dd : ð70Þ

The w2 of measurement k at this stage of the
filtering process is

w2k ¼ rTkR
�1
k rk: ð71Þ

3.3.5. Smoother

Once every measurement has been filtered, the
smoother is then used to propagate all the
information added during the filtering process to
a given measurement plane. The superscript S is
used to denote the value after the smoothing
operation. The smoothed state vector is

xSk ¼ xk þ AkðxSkþ1 � x
P
kþ1Þ ð72Þ

with:

Ak ¼ CkF
T
kþ1ðC

P
kþ1Þ

�1 ð73Þ

and the smoothed covariance matrix, residuals and
covariance of the residuals being:

CSk ¼ Ck þ AkðCSkþ1 � C
P
kþ1ÞA

T
k ð74Þ

rSk ¼ mk �Hkx
S
k � dz3k ð75Þ

RSk ¼ Vk �HkC
S
kH

T
k þ z6ks

2
dd : ð76Þ

The w2 also has to be modified for the smoothed
values:

w2
S

k ¼ ðrSkÞ
TðRSkÞ

�1rSk: ð77Þ
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The three step process of prediction, filtering and
smoothing is iterated for all the measurement
planes up to and including the information from
the most upstream plane. The whole procedure
then gives the track parameters at the plane closest
to the interaction point.

3.4. Kalman vertex fit

Once the track fit has been achieved, the vertex
fit can commence. The vertex fit is also an iterative
procedure and is similar to the track fit, except that
the measurements now consist of the track
parameters determined in the track fit, Pk ¼
fa; b; c; dg; and the state vector becomes the
position of the vertex x ¼ fy; zg (see Fig. 9). Each
track is weighted according to the inverse of the
covariance matrix of the measurements:

Gk ¼ ðcovðPkÞÞ
�1: ð78Þ

The tracks with lower momentum will have lower
weights, due to the effects of multiple scattering,
and so will have a smaller effect on the vertex
position. These low momentum tracks have the
largest values of the parameters c and d and so in

order to save computing time without any sig-
nificant penalty in vertex accuracy, a new set of
track parameters is used: Pk ¼ fa; b; c0g; where the
parameters a and b are the same as before, but the
new parameter c0 ¼ c þ dz; with z the coordinate of
the vertex after the last filter (or the initial estimate,
if this is the first iteration). This produces a local
approximation to the cubic track model which is
accurate as long as the vertex position does not
move significantly during the filtering stage.
The covariance matrix of the state vector will

again be represented by Ck: An additional vector
Qk ¼ fb; c0g is introduced to represent the angle
and magnitude of the momentum of track k at
the vertex. The measurement equation contains
the track model:

Pk ¼ Hkðxk;QkÞ þ ek; ð79Þ

with the function H defined as

Hð0Þ ¼ y � bz � c0z2 ð80Þ

Hð1Þ ¼
y � a

z
� c0z ð81Þ

Hð2Þ ¼
y � a

z2
�

b

z
: ð82Þ

Momentum at Vertex Q {b,c’}

Vertex Position
x={y,z}

First Measurement Plane

Parameters P {a,b,c’}

Fig. 9. Schematic of the Kalman vertex fit.
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In order to complete the vertex fit, it is necessary
to introduce two additional matrices:

Ak ¼
dPk

dxk

¼

1 �b � 2c0z
1
z

a�y
z2

� c0

1
z2

2ða�yÞ
z3

þ b
z2

2
64

3
75 ð83Þ

Bk ¼
dPk

dQk

¼

0 0

1 0

0 1

2
64

3
75 ð84Þ

such that the function Hk is linear around the
point ðxk;0;Qk;0Þ:

Hkðxk;0;Qk;0Þ ¼ ck;0 þ Akxk;0 þ BkQk;0 ð85Þ

and serves as a definition for ck;0: We can then
proceed to perform the stages of the Kalman
vertex filter as outlined in Ref. [11].

3.4.1. Prediction

The prediction equations are approximated by
the parameters at the last measurement plane:

xPk ¼ xk�1 ð86Þ

CPk ¼ Ck�1: ð87Þ

3.4.2. Filter

The new state vector after filtering is

xk ¼ Ck½ðCk�1Þ
�1xk�1 þ ATkG

B
k ðPk � ck;0Þ
 ð88Þ

where the following matrices are also defined:

Ck ¼ ½ðCk�1Þ
�1 þ ATkG

B
kAk
�1 ð89Þ

GB
k ¼ Gk �GkBkWkB

T
kGk ð90Þ

Wk ¼ ½BTkGkBk
�1: ð91Þ

The w2 of each filter step has 2 degrees of freedom:

w2k;F ¼ ðPk � ck;0 � Akxk � BkQkÞ
T

�GkðPk � ck;0 � Akxk � BkQkÞ

þ ðxk � xk�1Þ
TðCk�1Þ

�1ðxk � xk�1Þ ð92Þ

so the total w2 of the fit after adding k tracks is just

w2k ¼ w2k�1 þ w2k;F : ð93Þ

The filter is recomputed until there is no significant
change in the w2 or in the parameter estimates.

3.4.3. Inverse filter

It is also possible to remove a track from a
vertex fit by applying the inverse filter. The
procedure is identical to the filter except in the
sign of the matrix Ak:

xk ¼ Ck½ðCk�1Þ
�1xk�1 � ATkG

B
k ðPk � ck;0Þ
 ð94Þ

with

Ck ¼ ½ðCk�1Þ
�1 � ATkG

B
kAk
�1: ð95Þ

3.4.4. Smoother

The smoother does not make any changes to the
vertex position since it is assumed that there is no
process noise. Rather, it finds the parameters of
each track at the final vertex position:

xSk ¼ xk; ð96Þ

CSk ¼ Ck; ð97Þ

QSk ¼WkB
T
kGkðPk � ck;0 � AkxkÞ: ð98Þ

3.4.5. Initial conditions

It has been found that the result of the vertex fit
is very sensitive to the initial conditions that are
passed to it. This is a peculiarity of a fixed target
neutrino experiment, where there is no a priori
vertex estimate, as opposed to the case of collider
experiments or to other fixed target experiments
where a well defined target region is defined. An
initial estimate for the vertex position and the
covariance matrix for this estimate need to be
chosen with some care. If the initial vertex position
is chosen to be at the origin (or at some other
arbitrary location) and the covariance matrix
correspondingly large, the fit may not converge
quickly (or not at all) as the majority of events in
NOMAD-STAR have low multiplicity. If the
initial covariance matrix is too small then no
matter where the initial position of the vertex is
chosen, the filter will have a very small effect
compared to the weight of the initial estimate of
the track parameters. As a result, the initial
estimate should have some physical basis and, in
our case, it is made by finding the crossing point of
at least 2 tracks while determining the accuracy of
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this initial estimate by studying Monte Carlo
events.
An additional consideration is raised when there

are three or more tracks in the vertex fit. A typical
nm charged current interaction with three or more
tracks will contain a m� with a large momentum
and several other hadronic tracks of lower
momenta. It would be tempting to take the m�

and the highest momentum hadronic track to
calculate the initial vertex estimate, as this
combination suffers least from multiple scattering.
This can cause a problem, however, as the initial
vertex will lie exactly on the extrapolated paths of
the two highest momenta (and thus highest weight)
tracks and the filter will fail to effectively
incorporate information from the other lower
momentum tracks. In practice, this effect causes
the vertex position to only move up and down the
path of the highest momentum track. The solution
is to take at least three tracks and find the center of
the triangle defined by the three crossing points of
these tracks. The filter will see that the vertex
position does not agree perfectly with any given
track and will thus be free to move the vertex to
accommodate all the tracks in the fit, weighted
appropriately.

4. The NOMAD-STAR alignment

The alignment of the NOMAD-STAR detector
with muons traversing it [28] serves as an example
of the use of the Kalman filter for tracking
purposes. The alignment procedure relies heavily

on the Kalman filter to produce the best estimate
for the track parameters that minimise the relative
positions of each of the silicon detectors in
NOMAD-STAR. The alignment of the detector
is also crucial in order to achieve good spatial
resolution.
The signals of a given strip within a ladder only

give us the relative position of hits with respect to
the ladder, but not its position in the global
reference system. Even within a ladder, it is
important to know the relative positions of each
of the 12 detectors. Although the detectors were
glued nearly parallel to each other, the accuracy of
this gluing is not sufficient to determine the strip
coordinate along the 72 cm length of a ladder.
Instead, a strip inside a ladder defines a series of
segments, corresponding to each bonded detector,
rather than a straight line (Fig. 10).
Thus, to know the location of the hit in the

global system, the x coordinate of the hit is needed
as well as the exact position of each detector in the
global reference frame. The x position of the hit is
given by extrapolating back from the NOMAD
drift chambers (DC). As the strips inside a ladder
are nearly parallel to the x-axis, the error in the y

position of a hit coming from the error in x is
negligible, so the DC resolution DxDCB1:2 mm [2]
is sufficient.

4.1. Optical survey

An optical survey of all the detector positions
before the installation of NOMAD-STAR inside
the NOMAD detector was performed to serve as a

< 1 µ

σx

m

m

hit
strip

( given by the drift chamber extrapolation)

y

x

= 1.2 m

Fig. 10. Strip along a ladder.
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seed for the more general alignment using muons.
The optical survey was done in the laboratory and
has been described elsewhere [9,29].
The surveying was performed using a CCD

camera with magnifying optics, mounted on a
measuring table. The camera could be moved
independently along the three axial direction in
increments of 1 mm with the aid of stepping
motors. The positions of four points per detector
for all the ladders and layers of NOMAD-STAR
were measured with the surveying table. The
survey was performed initially for each of the
isolated frames of NOMAD-STAR (consisting of
10 ladders of 12 detectors each ladder). The
systematic errors associated to the survey of
the individual layers in the x; y and z positions
were determined to be 6.4, 6.6 and 14.1 mm;
respectively. Then, the layers were installed inside
the support basket (also called the mini-basket).
Due to constraints in the measuring system, only
the central detectors for each layer were able to be
surveyed once they were installed inside the mini-
basket. For these detectors, the added constraint
of the support frame modified their z position and
degraded their resolution (31 mm) but kept the x

and y positions unaltered.

4.2. Alignment seeds

Once the optical survey was performed, the
NOMAD-STAR mini-basket was installed in
NOMAD. The coordinates of the silicon detectors
inside the NOMAD frame were determined by
external survey measurements with a precision of
0:4 mm: The positions of all the detectors were
then transformed into the general NOMAD frame
but with this much coarser resolution.
The position of an individual detector in space is

defined by one translation ~rr0 and one rotation R;
which can be described by three angles or three
orthogonal unitary vectors (~uu; ~vv; ~ww). Via a w2

minimization with a planar model, the four points
per detector from the survey are transformed into
the quantities ~rr0; ~uu; ~vv; ~ww: Using this constraint,
the information is optimized and the survey errors
are reduced (from sy0 ¼ 6:6 to 4:0 mm). The
optical survey gives the initial ~rr0; ~uu; ~vv; ~ww which

serves as the starting point for the alignment of the
detectors with muons.
Although the relative y position resolution of

each individual detector was around 4 mm; possi-
ble internal movements in NOMAD-STAR
during and after installation and the coarse
resolution of the external survey means that we
have poor knowledge of the absolute positioning
of each element inside the global NOMAD
reference frame. It is assumed that movements of
the detectors inside a ladder are negligible, so
it is only necessary to perform a ladder-by-ladder
alignment. The position of a ladder is defined by
the position of the first detector. The relative
positions of individual detectors inside a ladder
are then given by the results of the survey.
Allowances are made for rotations and shifts of
the ladders within each of the planes, which are
nearly parallel to the xy plane. In addition, due to
the mechanical freedom of each frame inside the
mini-basket, allowance has to be made for rota-
tions and shifts involving the z coordinate of each
frame.

4.3. Muon selection

The alignment was performed by using energetic
muons passing through the detector. These muons
are those from the flat-top of the SPS beam as
selected by special triggers in NOMAD [30].
The resolution in z becomes smaller as the

angle of the muon increases. Since the muons
available for the alignment are mostly perpendi-
cular to the silicon planes, the information about
the z position of the detectors is minimal. In
Fig. 11 it is possible to see a correlation between
the angular distribution of the muons with their
momentum (the average angle being larger for low
energy muons).
Two independent alignments were performed to

optimize the xy projections of the detectors and
the projection involving the z coordinate:

* Alignment in xy: High momentum muons
with a very small angle (p > 50 GeV;
ymuonA½�0:5; 0:5
o). If the angle is small the
alignment in xy does not depend on the z

position of the ladders.
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* Alignment in z: High angle muons
(ymuonA½�10;�2:5
o), which imply low momen-
tum.

Each of the two alignments is performed by
minimizing the residuals on the position of a
ladder. The residual is defined, in this case, as the
difference between the predicted position of the hit

and the measured position given by the response of
a ladder. The predicted position of a hit is the
extrapolation of the reference track to the theore-
tical plane of the ladder without including the hit
in that ladder. The Kalman filter described in
Section 3 is used to build the reference track with
one or more hits in silicon and including the DC
information. The Kalman filter is also used to
calculate the hit prediction in the ladder. A w2

minimization of the residuals for each detector
determines the detector parameters.

4.4. Alignment in the xy plane

The silicon ladders are almost contained in the
xy plane. Three parameters describe the position
of a detector inside a plane: two shifts (x0 and y0)
and one angle y: But a silicon ladder provides only
one coordinate (almost equivalent to the y

coordinate in the NOMAD reference frame,
because the strips are nearly parallel to the x-axis,
see Fig. 12), so we do not have any information
about the shift x0:
We make the assumption that the ladders are in

the xy plane and the muons are perpendicular to
that plane. The error incurred by this assumption
is negligible compared to the intrinsic resolution of
the detectors (B5 mm).
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gl

e 
(0 )

alignment
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Fig. 11. Angle-momentum regions used for the alignment in

the xy plane and the alignment in z:
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Fig. 12. Alignment in the xy plane.
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The measured y position needed to calculate w2

is given by

ymeasured ¼ y0 þ s sin y|ffl{zffl}
uy

þ t cos y|ffl{zffl}
vy

; ð99Þ

where
t ¼ strip PITCH; ð100Þ

s ¼ ðxDC � x0 þ t sin y|ffl{zffl}
vx

Þ= cos y|ffl{zffl}
ux

; ð101Þ

with PITCH ¼ 50 mm and xDC the extrapolated x

position from the DC. If we assume small
corrections to y0 and y ðdy0; dy) (to first order):
y0
measured ¼ ymeasured þ dy0 þ s dy: ð102Þ

Minimizing the w2 we get a system of two linear
equations which can be easily solved.

4.5. Alignment in z

As we have demonstrated in Section 4.3, the
alignment in z requires high angle tracks in the yz

plane with respect to the z-axis. We have to choose
the parameters to be corrected in such a way that
the alignment in z does not affect the previous
alignment in xy (Fig. 13):

* the angle g describes the rotation around the y-
axis,

* the angle a describes the rotation around the
axis defined by ~uu; and

* the shift z0 from the nominal ladder position.

The angle y is defined in Fig. 12. It describes the
rotation inside the plane in which the ladder is
contained around the axis defined by ~ww: The z

coordinate of a given point inside a ladder is

z ¼ z0 þ s ðcos y sin gÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
uz

þ t ð�cos a sin y sin gþ sin a cos gÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vz

ð103Þ

where

s ¼ ½xDC � x0 þ t ðcos a sin y cos gþ sin a sin gÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vx


=

� cos y cos g|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ux

: ð104Þ

If we introduce Eq. (104) into Eq. (103):

z ¼ z0 þ ðxDC � x0Þtan gþ t
sin a
cos g

: ð105Þ

If a ladder was completely contained in the xy

plane, a and g would be 0. Assuming that the
angles a and g are small, and small corrections to
z0; a and g; the change in the z coordinate of the
point would be

dz ¼ dz0 þ ðxDC � x0Þ
1

cos2 g
dgþ t

cos a
cos g

da: ð106Þ

The y coordinate predicted by the cubic model
for a given z is

ypred ¼ a þ bz þ cz2 þ dz3: ð107Þ

t

v
s z0

y

x

z

γ

Intersection of
the detector with

plane XZ

θ

α w

γ

the detector with
Intersection of

plane YZ

u

Fig. 13. Definition of parameters for the alignment in z:
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For small corrections to z given by Eq. (106) we
get

y0
pred ¼ ypred þ

dypred

dz
dz þ

1

2

d2ypred

dz2
dz2

þ
1

6

d3ypred

dz3
dz3: ð108Þ

Minimizing the w2 function, we get the desired
corrections, dz0; da; dg:

w2 ¼
XN

i¼1

y0
predðdz0; da; dgÞ � ymeasured

sres

� �2
: ð109Þ

4.6. Alignment procedure

The muons available are quite straight so most
of them pass through the corresponding ladder (at
the same height) for each plane (see Fig. 14). We
define a set of ladders as the five ladders (one per
plane) located at the same height.
We summarize the sequence of steps in which

the alignment takes place:

* Global alignment ladder-by-ladder with respect
to the DC.

* Definition of the internal reference frame:
ladder 5 in the center of the outermost planes
(1, the closest to the DC, and 5, the furthest
from the DC, see Fig. 14).

* Correction of y for ladder 5 in plane 5 (relative
angle between planes 1 and 5).

* Alignment of planes 1 and 5 by using the
overlaps between two contiguous ladders.

* Iterative alignment in xy of all the ladders in the
inner planes (2–4).

* Iterative alignment in z of all the ladders in
planes 2–5.

4.6.1. Alignment with DC

To improve the 0:4 mm precision of the
NOMAD-STAR mini-basket with respect to
the rest of the NOMAD detector, we need to use
the DC to determine a more precise location of
NOMAD-STAR with respect to the NOMAD
reference frame. The first step of the alignment
consists in correcting the position of all the ladders
by minimizing the residuals defined by the DC
extrapolation and the hit in the corresponding
ladder (Fig. 14). This procedure locates NOMAD-
STAR in the NOMAD reference frame with a
precision of around 120 mm:

4.6.2. The internal reference frame

To achieve an intrinsic resolution of around
5 mm for an individual ladder from a relative
alignment of 120 mm with respect to the DC, the
final alignment has to be completely internal, so
we need to define an internal reference system for
NOMAD-STAR.

5

3 mm

3
4

2

DC

θµ

µ

Reference 
ladders

z

y

region between
two neighbouring

ladders

Overlapping

5 4 3 2 1

1

Reference planes

Alignment in XY

8
9

10

Alignment in Z

2 mm

6

7

Fig. 14. The alignment procedure.
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The axes are defined in Fig. 15. The x0-axis is
given by P1 and P2; two points of ladder 5 in plane
1 (the closest to the DC). This ladder remains
untouched after the alignment with the DC. The
z0-axis will be perpendicular to x0 containing P3 (~rr0
of ladder 5 in plane 5). Once z0 is defined, we can
move P3 along the z0-axis when performing the
alignment. Finally, y0 will be perpendicular to
the other two axes. The strip pitch defines the scale
of the y0-axis, while the scale of the z0-axis is given
by the projection of the strip pitch to this axis
given by muons (the z0 scale has no meaning before
the alignment). The scale of the x0-axis is not
defined but is not important because we cannot
measure the x coordinate with the silicon.
As we can see in Fig. 15, there exists a relative

angle (yref ) between the reference ladders that can
be corrected, keeping the internal reference frame
invariant. The way to correct this angle is by using
the iterative procedure explained in Section 4.6.4
for the 5th ladder in each plane, allowing changes
in yref and y0 for planes 2–4 and changes only in
yref for plane 5 (y0 fixed, see Section 4.4). This step
has to be done before the alignment by overlaps.

4.6.3. Alignment by overlaps

The way in which the internal reference frame
has been defined in Section 4.6.2 only works for
muons crossing ladder 5 in planes 1 and 5. To
extend the internal reference system to the whole
detector we must relate the positions of all the

ladders in these reference planes (1 and 5). This is
done by aligning the ladders in these planes taking
ladder 5 as reference. The way to do it is by using
the hits passing across the region where two
contiguous ladders overlap (Fig. 14). The distance
between these ladders in z is only 3 mm: In
addition, multiple scattering can be neglected
because there is no passive material between them.
Therefore, tracks with only two hits (in both
overlapped ladders) are sufficient to get a good
alignment between them. The reference track is
built with the hit in one of the ladders that overlap
and the information coming from the DC.
Residuals in the other overlapped ladder are
minimized in order to achieve the relative align-
ment. If ladder 5 in planes 1 and 5 are the reference
ladders, we start aligning ladder 6 and 4 using the
overlaps 5–6 and 5–4, respectively. Afterwards
overlaps 6–7 and 4–3 allow us to align ladders 7
and 3, and so on.

4.6.4. Iterative alignment

This is the most complicated part of the
alignment. It allows us to define the scale in y0

for the inner planes and in z0 for the whole
detector. Once the outermost planes have been
aligned, the alignment in xy of the inner layers and
the alignment in z are performed in an iterative
way (Fig. 14). Let us consider a set of ladders (5
ladders, one per plane, each one in the same
position within a plane).
We only use tracks with hits in all planes. For

the average of many tracks we have to correct
the position of the ladder that makes the w2 of the
track worst, or equivalently, the one which gives
the best w2 when the hit is removed from the fit.
We repeat this process until the w2 is stable (when
the change is o1%). This operation has to be
repeated for the ten sets of ladders, performing
both the alignment in xy and the alignment in z:

* The alignment in xy (see Section 4.4) is done
first, using very straight muons. Only ladders in
the inner planes (2–4) are allowed to be
corrected in order to keep the internal reference
frame invariant (see Section 4.6.2).

* The alignment in z (see Section 4.5) requires
high angle tracks. It involves planes 2–5. Plane
1 defines the origin.
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90

θ

Ladder 5 in plane 1

is completely fixed
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Ladder 5 in plane 5
One point is fixed in it

strip PITCH

X’Z’ plane
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Z’
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3P

2
3

4

ref

strip PITCH

Fig. 15. Definition of the internal reference system.
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One can also perform a cross-check to make sure
that everything is consistent. Having aligned two
contiguous sets of ladders independently to each
other, we can check that the residuals are centered
at zero using the overlaps between them for the
inner planes.

4.6.5. Alignment per detector

The alignment per ladder makes the assump-
tions that the movements of individual detectors
inside a ladder are negligible and that the survey
error of ssurveyB4 mm does not add significantly to
the overall resolution. We attempted to perform
detector-by-detector corrections. However, since
the statistics for a single detector are small and
there is not sufficient lever arm along the 5 cm
length of the detector in the x direction to make
corrections in the angle y; we can only attempt to
correct y0 (see Section 4.4):

y0
measured ¼ ymeasured þ dy0: ð110Þ

When we attempted to align the individual
detectors inside a ladder, the corrections we found
were of the order of 2 or 3 mm; compatible with the
survey errors and showing no apparent internal
movements. These corrections are not significant
compared with the other contributions to the
residuals, like the intrinsic resolution, multiple
scattering and extrapolation error, so we have
decided not to perform a systematic alignment
detector-by-detector.

4.7. Results

Fig. 16 shows the residuals after the alignment
for muons with high momentum (p > 50 GeV),
and low angle (ymuonA½�0:5; 0:5
o) [28].
We have found the error in the residuals to be

9 mm for the three inner planes (planes 2–4) and a
higher value of 12 mm for the two outer planes
(planes 1 and 5). This is an effect of the Kalman
filter since in an inner plane we have information
from both sides of the plane to predict the position
of the hit. However, for an outermost plane, the
information is only on one side. The error due to
multiple scattering and the one related with the
extrapolation is then larger in the case of the
outermost planes.

5. Impact parameter

An example of the use of the vertex fit is the
measurement of the impact parameter resolution
of NOMAD-STAR [31]. In a nm charged current
interaction, the m� and hadronic jet come from the
same point in space, and so if the m� track is
removed from the vertex fit, it should still point to
the vertex that is now composed only of the
hadronic jet. The impact parameter (d) has been
defined in Section 2 as the projected signed
distance of closest approach to the m� from a nm
charged current interaction to the vertex produced
by the remaining hadronic jet. The impact para-
meter significance is the same quantity divided by
the calculated error.
The procedure for measuring the impact para-

meter resolution of STAR uses both the vertex
filter and the inverse filter. The first stage is to fit
the m� and hadronic jet into one vertex (the
primary vertex). If there is an identified m� in the
vertex, it can then be removed from the vertex
using the inverse filter. At this point the vertex
position is now determined only by the hadronic
jet. The m� track can then be extrapolated to this
new vertex position and the projected impact
parameter can then be measured.
The results obtained for the impact parameter

and impact parameter significance for the nm
charged current interactions obtained from the
NOMAD-STAR 1998 data set are shown in
Fig. 17. The comparison of the data and nm
charged current Monte Carlo distributions are in
good agreement and show an RMS of approxi-
mately 52 mm and an impact parameter signifi-
cance with a fitted mean close to zero and width of
1.2. The non-Gaussian tail of the distribution is
attributed to two track events with a small opening
angle. Imposing that the two tracks have an
opening angle of > 0:2 rad yields the bottom
distributions shown in Fig. 17. The RMS of the
impact parameter is now 36 mm and the impact
parameter significance is Gaussian with a width of
1.0, which indicates that the errors are being taken
into account properly. Cutting out all two track
events results in an impact parameter with RMS of
33 mm; which is close to the value of 28 mm
described in Ref. [3] and shown in Fig. 4. Any
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Fig. 16. Distribution of residuals after the aligment.
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further differences are also probably due to the
limited lever arm of NOMAD-STAR. With only 5
silicon layers, it is frequent that there are only two
or three hits that define a track, compared to the
10 silicon layers in the NAUSICAA design.
The impact parameter significance (ds) has quite

a similar distribution to the NAUSICAA propo-
sal, justifying cuts on this variable. If one would

use this detector for nmðneÞ2nt oscillations, where
the t� decays to a m�; one would obtain an
exponential impact parameter distribution with an
RMS around 62 mm (Fig. 4). A cut at ds > 4
reduces the nm CC background by 2 orders of
magnitude. According to Ref. [3], a detector like
NOMAD-STAR would have a 10% efficiency for
t detection when the t decays to one charged

2-track primaries: opening angle ≥ 0.2 rad
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Fig. 17. Impact parameter distribution (left) and impact parameter significance (right) of nm CC data (points) and Monte Carlo
(histogram). The top figures are for all events with two or more tracks and the bottom figures are cutting out events with two tracks

and an opening angle of o0:2 rad:
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particle while having a background rejection
factor of more than 106: Furthermore, one can
mimic the nmðneÞ2nt signature in data by studying
short-lived particles like Ks; L and charm parti-
cles. A search for such short-lived states is
currently in progress.

6. Conclusion

NOMAD-STAR, a prototype silicon tracking
detector installed inside the NOMAD magnet, can
be used as an example of the application of
Kalman filtering techniques for tracking and
vertexing of particles. In the present paper we
have shown the Kalman filter algorithms used for
tracking particles from neutrino interactions in the
NOMAD-STAR volume and for finding their
associated vertices. An application of the tracking
algorithms is the alignment of the NOMAD-
STAR detector with through-going muons traver-
sing it. In addition, the vertexing algorithms are
used for the determination of the impact para-
meter of nm charged current interactions.
These algorithms have proven to be very

effective in achieving alignment residuals between
9 and 12 mm and an impact parameter distribution
from nm charged current interactions with an RMS
of 36 mm when small opening angle events
(o0:2 rad) for two-track primary vertices are
removed. This encouraging result shows potential
for a similar type of detector to measure
nmðneÞ2nt signals with high efficiency.

Acknowledgements

Funding is acknowledged from the EP Division
at CERN; ARC and DISR (Australia). We would
like to thank all the people who have made the
NOMAD-STAR detector possible: G. Baricchello,
D.C. Daniels, L. Dumps, C. G .o�ling, D. Geppert,
S. Geppert, W. Huta, J.M. Jim!enez, J. Long,
B. Lisowski, A. Lupi, K. M .uhleman, J. Mulon,
B. Schmidt, D. Steele, M. Stip$cevi!c, M. Veltri and
D. Voillat, and the encouragement and support of
all the NOMAD institutions. F.J.P. Soler is
supported by a TMR Fellowship from the

European Commission. J. Kokkonen acknowl-
edges support from the Academy of Finland, the
Magnus Ehrnrooth Foundation, the Foundation
for the Commercial and Technical Sciences
(KAUTE) and the Waldemar von Frenckell
Foundation.

References

[1] E. Eskut, et al., CHORUS Collaboration, Nucl. Instr. and

Meth. A 401 (1997) 352;

E. Eskut, et al., CHORUS Collaboration, Phys. Lett. B

434 (1998) 205.

[2] J. Altegoer, et al., The NOMAD Collaboration, Nucl.

Instr. and Meth. A 404 (1998) 96;

P. Astier, et al., The NOMAD Collaboration, Phys. Lett.

B 453 (1999) 169.

[3] J.J. G !omez-Cadenas, J.A. Hernando, A. Bueno, Nucl.

Instr. and Meth. A 378 (1996) 196.

[4] J.J. G !omez-Cadenas, J.A. Hernando, Nucl. Instr. and

Meth. A 381 (1996) 223–235.

[5] A.S. Ayan, et al., CERN-SPSC/97-5, SPSC/I213, March,

1997.

[6] O. Toker, S. Masciocchi, E. Nyg(ard, A. Rudge, P.

Weilhammer, Nucl. Instr. and Meth. A 340 (1994) 572.

[7] P.P. Allport, et al., Nucl. Instr. and Meth. A 310 (1991)

155.

[8] G. Baricchello, et al., Nucl. Instr. and Meth. A 413 (1998)

17.

[9] G. Baricchello, et al., Nucl. Instr. and Meth. A 419 (1998)

1.

[10] R.E. Kalman, J. Basic Eng. 82 (1960) 35;

R.E. Kalman, R.S. Bucy, J. Basic Eng. 83 (1961) 95.

[11] R. Fr .uhwirth, Nucl. Instr. and Meth. A 262 (1987)

444.

[12] P. Billoir, Nucl. Instr. and Meth. 225 (1984) 352.

[13] P. Billoir, R. Fr .uhwirth, M. Regler, Nucl. Instr. and Meth.

A 241 (1985) 115.

[14] L. Stanco, Comput. Phys. Commun. 57 (1989) 380.

[15] P. Billoir, S. Qian, Nucl. Instr. and Meth. A 294 (1990)

219;

P. Billoir, S. Qian, Nucl. Instr. and Meth. A 295 (1990)

492.

[16] P. Billoir, S. Qian, Nucl. Instr. and Meth. A 311 (1992)

139.

[17] E. Calligarich, R. Dolfini, M. Genoni, A. Rotondi, Nucl.

Instr. and Meth. A 311 (1992) 151.

[18] V. Innocente, E. Nagy, Nucl. Instr. and Meth. A 324

(1993) 297.

[19] E.J. Wolin, L.L. Ho, Nucl. Instr. and Meth. A 329 (1993)

493.

[20] R. Luchsinger, C. Grab, Comput. Phys. Commun. 76

(1993) 263.

[21] P. Astier, et al., Nucl. Instr. and Meth. A 450 (2000) 138.

A. Cervera-Villanueva et al. / Nuclear Instruments and Methods in Physics Research A 486 (2002) 639–662 661



[22] V.E. Kuznetsov, Nucl. Phys. B (Proc. suppl.) 78 (1999)

287.

[23] G.Z. Moli"ere, Z. Naturforsch. 2a (1947) 133;

Z. Naturforsch, 3a 1948 (78).

[24] H.A. Bethe, Phys. Rev. 89 (1953) 1256.

[25] G.R. Lynch, O.I. Dahl, Nucl. Instr. and Meth. B 58 (1991)

6.

[26] GEANT, CERN Program Library Long Writeup W5013,

1994, 234.

[27] Particle Data Group, Eur. Phys. J. C15 (2000) 163.

[28] A. Cervera-Villanueva, Nucl. Instr. and Meth. A 447

(2000) 100.

[29] A. Cervera-Villanueva, et al., Survey of the Frames for

STAR, NOMAD Internal Note, NOMAD-MEMO-97-48,

18 December 1997.

[30] J. Altegoer, et al., Nucl. Instr. and Meth. A 428 (1999) 299.

[31] F.J.P. Soler, ‘‘Silicon Detectors for Neutrino Physics

Experiments’’, Fifth International Conference on Position

Sensitive Detectors, University College, London, Septem-

ber 1999. Nucl. Instr. and Meth. A 477 (2002) 456.

A. Cervera-Villanueva et al. / Nuclear Instruments and Methods in Physics Research A 486 (2002) 639–662662


	Kalman filter tracking and vertexing in a silicon detector for neutrino physics
	Introduction
	Motivation
	The Kalman filter for track and vertex fitting
	Background
	Trajectories of particles in a magnetic field
	Kalman track filter
	Multiple Coulomb scattering
	Energy loss
	Prediction
	Filter
	Smoother

	Kalman vertex fit
	Prediction
	Filter
	Inverse filter
	Smoother
	Initial conditions


	The NOMAD-STAR alignment
	Optical survey
	Alignment seeds
	Muon selection
	Alignment in the xy plane
	Alignment in z
	Alignment procedure
	Alignment with DC
	The internal reference frame
	Alignment by overlaps
	Iterative alignment
	Alignment per detector

	Results

	Impact parameter
	Conclusion
	Acknowledgements
	References


