
History
◆ Current generation of CMS software consists of
⁃ C++ (framework), python (web, data and workload 

management), Java (web & data services), perl (web services)
◆ Major data-services, such as PhEDEx, Data Bookkeeping System, 

Run Summary are based on RDBMS
⁃ production: ORACLE, development: MySQL and SQLite

◆ R&D of tools based on NoSQL stores began in 2009

Life in extra dimensions of database world or penetration of NoSQL in HEP 
community
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DAS w/ MongoDB
◆ MongoDB is schema-less document oriented database

⁃ documents stored as binary JSON; read/write operations are very fast due to 
memory-mapped files

⁃ it supports native drivers; multiple indexing; data collections; in-place updates

◆ Document based queries (on par w/ SQL)

⁃ Flexible query language; map-reduce; aggregation 

◆ Horizontal scaling via replication and sharding

⁃ mirrors via LANs and WANs

◆ Open source; native support for different OSes

◆ DAS uses MongoDB as cache storage

⁃ documents from different data-services can be stored and queried together 
(similar to federated database but does not require a schema)

⁃ we achieved 20k/7k docs per second for read/write I/O

WMAgent w/ CouchDB

IgProf w/ KyotoCabinet

◆ Effective key-value store; data in JSON

◆ MySQL stores job definitions and dependencies, while CouchDB handles job 
progress, job summaries and output reports 

◆ RESTful HTTP API - in common w/ service we write, no need to maintain DAO's

◆ Limited relationships between data, map-reduce data look-up is sufficient

⁃ incremental index building maintains performance

◆ Replication is built in and very simple

◆ Back-up in CouchDB is simple due to append only file format

⁃ can either replicate DB to another node or write DB file to CASTOR

◆ CouchDB is written in Erlang: high concurrency is natively supported

⁃ open source; clustering solution exists; commercial support is available

Profiling data analysis tool

Generic event collector and
dynamic function instrumentation 
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◆ O(100) profiles/build, O(100M) of keys
◆ IgProf uses SQLite and KyotoCabinet

⁃ SQLite to store build profiles

⁃ Kyoto to analyze profile results (compare multiple one)

◆ Kyoto is a library of routines for managing a database

⁃ choose your DB type based on you app

◆ It is key-value store

⁃ very fast, elapsed time to store/search 1M records ~1 sec

⁃ multi-thread safe, supports transactions and ACID properties

⁃ written in C++; provides APIs for different languages

Benefits of (No)SQL
◆ Schema-less document oriented storage provides new degree 

of freedom at application level and allowed us to build 
sophisticated tools

⁃ shown applications do not require ACID properties and 
rather favor flexibility of data storage and its high-
availability in distributed environment

◆ Key-value stores can be fast, compact, portable alternative to 
RDBMS where schema is overkill

◆ Minimal administrative cost and maintenance

Production experience

Conclusions
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Main tool for performance tuning of CMS software (core framework)

Reasons to bring NoSQL stack
◆ Application growth
⁃ heterogenous environment; evolving data models; big data scale
⁃ RDBMS may not be best solution, e.g. trade ACID in favor of BASE properties, data 

evolution/aggregation
⁃ underlying schema constraints can become real bottleneck
⁃ high availability vs consistency
⁃ real time features, e.g. analytics, aggregation, map-reduce

◆ Horizontal scalability & sharding
⁃ usage of commodity hardware; search across multiple servers/indexes; distributed 

map-reduce operations 
◆ Administrative and maintenance cost
⁃ choice of RDBMS has long term commitment, licensing issues, off-site deployment

An intelligent cache in front of CMS data-services; fetch and aggregate 
data on demand upon user queries; next generation of data discovery 
in CMS experiment

Data and Workflow management tool for job submission and execution 
engine; dispatch and manage CMS jobs

◆ DAS aggregates data across dozens of data-services (DBS, Phedex, RunSum, CondDB, 
etc.)

⁃ we are able to query over distributed databases using common Query Language 
and data-service APIs

⁃ it divides data-service development from common UI/QL; accepts data-service 
security policies; use different data-formats (JSON/XML/CSV) and legacy/
production APIs

⁃ MongoDB used as dynamic cache, 1M records/day (50GB in size)

◆ WMAgent spawns jobs across the globe

⁃ job bookkeeping is distributed by nature, but replication among data centers is 
trivial task

⁃ CouchDB is used as distributed storage, 8 instances, 6M+ docs (300GB in size)

◆ IgProf keeps our software builds healthy by analyzing in real-time different 
configurations, measuring and analyzing application memory and performance 
characteristics

⁃ KyotoCabinet is integrated with release builds; it is used to store build profile 
results and compare build results/configurations; zero administration cost

◆ CMS maintains NoSQL solutions without central IT support

⁃ we heavily utilize CERN VM for deployment/integration tests

⁃ we deploy NoSQL products as any other piece of CMS software

⁃ 2 years of running shows no significant problems with NoSQL stack

◆ NoSQL solutions have found a niche in CMS software stack
⁃ one size does not fit all use cases

◆ Nicely co-exists with existing RDBMS solutions
⁃ complement them rather then compete

◆ Requires minimal administrative and maintenance cost
⁃ all NoSQL solutions serve as application back-end
⁃ deployed in virtualization environment (CERN VM)

◆ Their size is an order of magnitude less of RDBMS
     usage, but quickly growing


