Life in extra dimensions of database world or penetration of NoSQL in HEP

CMS - community

Valentin Kuznetsov (Cornell, USA), Dave Evans (FNAL, USA), Simon Metson (Bristol, UK)

History Reasons to bring NoSQL. stack

¢ Current generation of CMS software consists of ¢ Application growth

- C++ (framework), python (web, data and workload
management), Java (web & data services), perl (web services)
¢ Major data-services, such as PhEDEx, Data Bookkeeping System,
Run Summary are based on RDBMS
- production: ORACLE, development: MySQL and SQLite
¢ R&D of tools based on NoSQL stores began in 2009

- heterogenous environment; evolving data models; big data scale

- RDBMS may not be best solution, e.g. trade ACID in favor of BASE properties, data
evolution/aggregation

- underlying schema constraints can become real bottleneck

- high availability vs consistency

- real time features, e.g. analytics, aggregation, map-reduce

¢ Horizontal scalability & sharding

- usage of commodity hardware; search across multiple servers/indexes; distributed
map-reduce operations

¢ Administrative and maintenance cost

DAS w/ MongoDB

An intelligent cache in front of CMS data-services; fetch and aggregate
data on demand upon user queries; next generation of data discovery
in CMS experiment

e L Mongo DB
S—
Analytics
DB
1
dJ
el
- SON
5 cesl
g_ cach
DAS [6 Mappping
(¢'/ DB
/Cc —
q’b/s -
te
AlLe 7y
\\\,\Q "7@\\44
A4
JSON Document XML Document
{site_name:AAA, <SiteName>AAA</SiteName>
nfiles:1} <nDisk>5</nDisk>
data-
provider

- choice of RDBMS has long term commitment, licensing issues, off-site deployment

¢ MongoDB is schema-less document oriented database

- documents stored as binary JSON; read/write operations are very fast due to
memory-mapped files

- it supports native drivers; multiple indexing; data collections; in-place updates
¢ Document based queries (on par w/ SQL)
- Flexible query language; map-reduce; aggregation
¢ Horizontal scaling via replication and sharding
- mirrors via LANs and WANs
¢ Open source; native support for different OSes
¢ DAS uses MongoDB as cache storage

- documents from different data-services can be stored and queried together
(similar to federated database but does not require a schema)

- we achieved 20k/7k docs per second for read/write I/O

WMAgent w/ CouchDB

Data and Workflow management tool for job submission and execution
engine; dispatch and manage CMS jobs

L

N———

% 7%
I
V%%

APPROVED
Request L1, L2 '
Ma nager AAAAAAA

Work
Queue

¢

WMAgent

%
(a7
S
=
M
[
O

WMBS JobStateMachine
manage manage
dependencies work

JobDump

—
MMMMMMMMMMMM
\ Workload

summary

¢ Effective key-value store; data in JSON

¢ MySQL stores job definitions and dependencies, while CouchDB handles job
progress, job summaries and output reports

& RESTful HTTP API - in common w/ service we write, no need to maintain DAO's
¢ Limited relationships between data, map-reduce data look-up is sufficient
- incremental index building maintains performance
¢ Replication is built in and very simple
¢ Back-up in CouchDB is simple due to append only file format
- can either replicate DB to another node or write DB file to CASTOR
¢ CouchDB is written in Erlang: high concurrency is natively supported

- open source; clustering solution exists; commercial support is available

lgProf w/ KyotoCabinet

Main tool for performance tuning of CMS software (core framework)

GUI Web interface Book

¢ O(100) profiles/build, O(100M) of keys
¢ IgProf uses SQLite and KyotoCabinet

- SQLite to store build profiles
- Kyoto to analyze profile results (compare multiple one)
¢ Kyoto is a library of routines for managing a database
- choose your DB type based on you app
¢ It is key-value store
- very fast, elapsed time to store/search 1M records ~1 sec
- multi-thread safe, supports transactions and ACID properties

- written in C++; provides APIs for different languages

Production experience

Benefits of (No)SQL.

¢ DAS aggregates data across dozens of data-services (DBS, Phedex, RunSum, CondDB, ¢ Schema-less document oriented storage provides new degree

etc.)

- we are able to query over distributed databases using common Query Language

and data-service APls

- it divides data-service development from common UI/QL; accepts data-service
security policies; use different data-formats JSON/XML/CSV) and legacy/

production APIs

- MongoDB used as dynamic cache, 1M records/day (50GB in size)

¢ WMAgent spawns jobs across the globe

of freedom at application level and allowed us to build
sophisticated tools

- shown applications do not require ACID properties and
rather favor flexibility of data storage and its high-
availability in distributed environment

¢ Key-value stores can be fast, compact, portable alternative to
RDBMS where schema is overkill

¢ Minimal administrative cost and maintenance

- job bookkeeping is distributed by nature, but replication among data centers is

trivial task

Conclusions

- CouchDB is used as distributed storage, 8 instances, 6M+ docs (300GB in size)

¢ lgProf keeps our software builds healthy by analyzing in real-time different
configurations, measuring and analyzing application memory and performance

characteristics

¢ NoSQL solutions have found a niche in CMS software stack
- one size does not fit all use cases

¢ Nicely co-exists with existing RDBMS solutions
- complement them rather then compete

- KyotoCabinet is integrated with release builds; it is used to store build profile ¢ Requires minimal administrative and maintenance cost
results and compare build results/configurations; zero administration cost - all NoSQL solutions serve as application back-end

¢ CMS maintains NoSQL solutions without central IT support
- we heavily utilize CERN VM for deployment/integration tests
- we deploy NoSQL products as any other piece of CMS software

- 2 years of running shows no significant problems with NoSQL stack

\

- deployed in virtualization environment (CERN VM)
¢ Their size is an order of magnitude less of RDBMS
usage, but quickly growing

