
History
◆ Current generation of CMS software consists of
⁃ C++ (framework), python (web, data and workload

management), Java (web & data services), perl (web services)
◆ Major data-services, such as PhEDEx, Data Bookkeeping System,

Run Summary are based on RDBMS
⁃ production: ORACLE, development: MySQL and SQLite

◆ R&D of tools based on NoSQL stores began in 2009

Life in extra dimensions of database world or penetration of NoSQL in HEP
community

Valentin Kuznetsov (Cornell, USA), Dave Evans (FNAL, USA), Simon Metson (Bristol, UK)

DAS w/ MongoDB
◆ MongoDB is schema-less document oriented database

⁃ documents stored as binary JSON; read/write operations are very fast due to
memory-mapped files

⁃ it supports native drivers; multiple indexing; data collections; in-place updates

◆ Document based queries (on par w/ SQL)

⁃ Flexible query language; map-reduce; aggregation

◆ Horizontal scaling via replication and sharding

⁃ mirrors via LANs and WANs

◆ Open source; native support for different OSes

◆ DAS uses MongoDB as cache storage

⁃ documents from different data-services can be stored and queried together
(similar to federated database but does not require a schema)

⁃ we achieved 20k/7k docs per second for read/write I/O

WMAgent w/ CouchDB

IgProf w/ KyotoCabinet

◆ Effective key-value store; data in JSON

◆ MySQL stores job definitions and dependencies, while CouchDB handles job
progress, job summaries and output reports

◆ RESTful HTTP API - in common w/ service we write, no need to maintain DAO's

◆ Limited relationships between data, map-reduce data look-up is sufficient

⁃ incremental index building maintains performance

◆ Replication is built in and very simple

◆ Back-up in CouchDB is simple due to append only file format

⁃ can either replicate DB to another node or write DB file to CASTOR

◆ CouchDB is written in Erlang: high concurrency is natively supported

⁃ open source; clustering solution exists; commercial support is available

Profiling data analysis tool

Generic event collector and
dynamic function instrumentation

core

DB

Web interfaceGUI Book Kyto
Cabinet

◆ O(100) profiles/build, O(100M) of keys
◆ IgProf uses SQLite and KyotoCabinet

⁃ SQLite to store build profiles

⁃ Kyoto to analyze profile results (compare multiple one)

◆ Kyoto is a library of routines for managing a database

⁃ choose your DB type based on you app

◆ It is key-value store

⁃ very fast, elapsed time to store/search 1M records ~1 sec

⁃ multi-thread safe, supports transactions and ACID properties

⁃ written in C++; provides APIs for different languages

Benefits of (No)SQL
◆ Schema-less document oriented storage provides new degree

of freedom at application level and allowed us to build
sophisticated tools

⁃ shown applications do not require ACID properties and
rather favor flexibility of data storage and its high-
availability in distributed environment

◆ Key-value stores can be fast, compact, portable alternative to
RDBMS where schema is overkill

◆ Minimal administrative cost and maintenance

Production experience

Conclusions

Request
Manager

Work
Queue

WMAgent

MySQL

WMBS
manage

dependencies

JobStateMachine
manage
work

CouchDB

JobDump

Workload
summary

L1, L2
Manager

APPROVED

O
P
E
R
A
T
O
R
S

Main tool for performance tuning of CMS software (core framework)

Reasons to bring NoSQL stack
◆ Application growth
⁃ heterogenous environment; evolving data models; big data scale
⁃ RDBMS may not be best solution, e.g. trade ACID in favor of BASE properties, data

evolution/aggregation
⁃ underlying schema constraints can become real bottleneck
⁃ high availability vs consistency
⁃ real time features, e.g. analytics, aggregation, map-reduce

◆ Horizontal scalability & sharding
⁃ usage of commodity hardware; search across multiple servers/indexes; distributed

map-reduce operations
◆ Administrative and maintenance cost
⁃ choice of RDBMS has long term commitment, licensing issues, off-site deployment

An intelligent cache in front of CMS data-services; fetch and aggregate
data on demand upon user queries; next generation of data discovery
in CMS experiment

Data and Workflow management tool for job submission and execution
engine; dispatch and manage CMS jobs

◆ DAS aggregates data across dozens of data-services (DBS, Phedex, RunSum, CondDB,
etc.)

⁃ we are able to query over distributed databases using common Query Language
and data-service APIs

⁃ it divides data-service development from common UI/QL; accepts data-service
security policies; use different data-formats (JSON/XML/CSV) and legacy/
production APIs

⁃ MongoDB used as dynamic cache, 1M records/day (50GB in size)

◆ WMAgent spawns jobs across the globe

⁃ job bookkeeping is distributed by nature, but replication among data centers is
trivial task

⁃ CouchDB is used as distributed storage, 8 instances, 6M+ docs (300GB in size)

◆ IgProf keeps our software builds healthy by analyzing in real-time different
configurations, measuring and analyzing application memory and performance
characteristics

⁃ KyotoCabinet is integrated with release builds; it is used to store build profile
results and compare build results/configurations; zero administration cost

◆ CMS maintains NoSQL solutions without central IT support

⁃ we heavily utilize CERN VM for deployment/integration tests

⁃ we deploy NoSQL products as any other piece of CMS software

⁃ 2 years of running shows no significant problems with NoSQL stack

◆ NoSQL solutions have found a niche in CMS software stack
⁃ one size does not fit all use cases

◆ Nicely co-exists with existing RDBMS solutions
⁃ complement them rather then compete

◆ Requires minimal administrative and maintenance cost
⁃ all NoSQL solutions serve as application back-end
⁃ deployed in virtualization environment (CERN VM)

◆ Their size is an order of magnitude less of RDBMS
 usage, but quickly growing

