
1 Significance

Missing transverse momentum may arise from many sources, some of which, like instrumental
defects and measurement resolution, represent unwanted contributions that we would like to
suppress. In this section we discuss a significance variable, S, which assesses on an event by
event basis the likelihood that the observed E/ T is a fluctuation from zero arising from finite
measurement resolution. S provides information beyond the raw value of E/ T that the user
may deploy to improve S/B in some physics cases.

1.1 Definition

The determination of missing transverse momentum involves computation of the vector sum

of selected ~E/ T vectors, and its significance requires evaluation of the total uncertainty as-

sociated with that sum. Using the notation ~ε = (εx, εy) to indicate a generic ~ET vector, we
will characterize the measurement uncertainty associated with ~ε by a function L(~ε), which
defines likelihood contours in the (εx, εy) plane. To find the likelihood function associated
with the sum over many ~εi, we consider first the case of two vectors, ~ε1 and ~ε2; the resultant
~ε = ~ε1 +~ε2 has a likelihood distribution given by:

L(~ε) =
∫
L1(~ε1)L2(~ε2)δ(~ε−~ε1 −~ε2) d~ε1 d~ε2. (1)

For an arbitrary number of input vectors the final likelihood is obtained by applying Eq. 1
recursively.

This formulation in terms of likelihoods is completely general and will accomodate any like-
lihood distributions L(~εi), but in practice we can often assume gaussian errors for measured
quantities – in which case the integrals of Eq. (1) may be done analytically. Given a 2 × 2
covariance matrix Vi describing the measurement uncertainties in ~εi, a gaussian likelihood
distribution is given by1

Li(~εi) ∼ exp(−1

2
~ε T
i V−1

i ~εi)

and the integration of Eq. 1 yields

L(~ε) ∼ exp(−1

2
(~ε−~ε1 −~ε2)

T V−1 (~ε−~ε1 −~ε2))

with V = V1 + V2. This is just ordinary propagation of errors. For many contributing

1The superscript T indicates the transpose of a matrix or column vector; subscript T indicates “trans-
verse”, as in “transverse energy”.
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vectors the expression becomes

L(~ε) ∼ exp(−1

2
(~ε−

∑
i

~εi)
T (
∑
i

Vi)
−1(~ε−

∑
i

~εi). (2)

In the case of E/ T significance, the sums are taken over detector elements (such as calotowers)

or higher level objects (such as jets). Each ~εi is the −~E/ T of the ith element or object,
and Vi its corresponding covariance matrix. Each covariance matrix in turn is most easily
specified in a natural coordinate system having one axis aligned with the object’s ~ET vector,
~ET ≡ (ET cosφ, ET sinφ):

Ui =

(
σ2
ET i

0
0 E2

T i σ
2
φi

)
. (3)

Once specified in this way, the matrix must be rotated into the standard CMS xy reference
frame with a rotation matrix R(φi),

Vi = R(φi)UiR
−1(φi) (4)

before summing with others.

We then define the significance as the log-likelihood ratio,

S ≡ −2 ln

L(~ε = ~E/ T
observed

)

L(~ε = 0)

 , (5)

which compares the likelihood of the observed ~E/ T with the likelihood of the null hypothesis
~E/ T = 0. Combining Eqs. 2, 4, and 5 we obtain

S = (
∑
i

~εi)
T

(∑
i

R(φi)UiR
−1(φi)

)−1

(
∑
i

~εi). (6)

Note that
~E/ T = −

∑
i

~εi.

Equation 6 is the basis upon which we build the significance algorithm. In general S will be
small when the E/ T can be attributed to measurement resolution, and large otherwise. The
value of S depends on resolutions which are presently not well known, but it may still be used
effectively as a discriminant to distinguish hypothesis pairs (“signal” and “background”) in
appropriate cases. The discrimination power is something the user should evaluate for his
or her own analysis.

Two comments are in order:
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• It is useful to realize that in the gaussian case S is nothing more than a χ2 value. In

fact if we choose to work in a coordinate system with the x axis aligned with the ~E/ T
axis, instead of the CMS horizontal axis, then Eq. 6 simplifies to a one-dimensional
statement, S = E2

T/σ
2
ET

. This clarifies the essential meaning of S, but it tends also to
obscure an important fact – namely that through its denominator, S embodies the full
topological information in the event. Essential features such as the angles between the
measured MET vector and the various jets and unclustered calotowers in the event are
embedded in the definition of σ2

ET
. This fact is more evident in the representation of

Eq. 6.

• The specialization to gaussian likelihood functions adopted here is somewhat less re-
strictive than it may appear. Eq. (1) is linear in the likelihoods and consequently any
likelihood that can be expressed as linear combination of gaussians is easily handled.
This is the situation commonly seen, as for example in cases where resolutions are
parametrized by combinations of “narrow” and “wide” gaussians. Asymmetric distri-
butions can also sometimes be handled in this way, using displaced gaussians. In any
case Eq. (1) remains valid for arbitrary distributions, even if numerical integration
may be required in difficult cases.

1.2 Implementation

To apply Eq. (6) one must specify the domain of the sums; different flavors of significance
can be constructed by choosing different sets of objects to sum over. For succinctness, we
restrict ourselves here to discussing MHT Significance, SH , in which the sums are taken
over jets, electrons, and muons. Another obvious possibility is MET Significance, SE, in
which one sums directly over calotowers. SE carries additional information embedded in the
distribution of unclustered energy in the event, and in the long run may prove to be the more
useful formulation, but SH has the advantage of relying only on well-studied objects whose
resolutions are known. In Monte Carlo studies (of CSA07 vintage) SE is somewhat more
effective than SH . Nevertheless, unless specifically noted otherwise, all further discussion is
about SH .

In the current implementation the algorithm sums jets, electrons, and muons. We require
the jets to pass loose criteria, pT > 20 GeV, η < 5, and EMF < 0.9, where EMF is the
electromagnetic fraction in the jet, the ratio of ecal to hcal energy deposition. Electrons must
satisfy pT > 10 GeV, η < 3, and muons, pT > 10GeV, η < 2.5. These criteria are settable2

and may be subject to future optimization, as well as individual user control. The algorithm
uses SelectedLayer1Jets, SelectedLayer1Electrons, and SelectedLayer1Muons as its
input so the user may impose additional and/or more restrictive criteria through the PAT
Layer1 selection.

In the implementation in CMSSW 1.6.12 reported here, we parametrize the jet resolutions

2/CMSSW/PhysicsTools/PatAlgos/data/producersLayer1/mhtProducer.cfi
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with an expansion in 1/
√
ET of the reconstructed jet,

(
σET

ET

)2

=
(
a

ET

)2

+

(
b√
ET

)2

+ c2 (7)

with a = 5.6, b = 1.25, and c = 0.033 as given in the Physics TDR (Ch. 11.4). Similarly
the jet angular resolution σφ is taken to have the same form, with a = 4.75, b = 0.426,
and c = 0.023. These values are set in the mhtProducer.cfi file and enter the formalism
here through the covariance matrix Ui of Eq. (3). For each jet, the parameterization of Eq.
7 is evaluated at the measured value of the jet ET and is then taken to be constant, i.e.,
it is not a variable in the integration of Eq. 1. The entries of the total covariance matrix
V ≡ ∑

iR(φi)UiR
−1(φi) are usually dominated by the jet resolutions, which go roughly as

σET
∼ 1.25

√
ET per jet, while the contributions from electrons and muons, characterized by

σpT
∼ 0.02pT , are significantly smaller. We therefore treat the lepton resolutions as negligible

(i.e., zero) for now. This is approximation cannot be justified at large pT and/or η, and will
need to be improved upon in the future. Note that this only applies to resolutions used in

computing the covariance matrix, and not to the lepton ~ε vectors entering the ~E/ T sum!

1.3 Performance

To illustrate the use of the significance variable, we explore its performance in two quite
different physics cases: W → eν and SUSY (LM1, all hadronic). In the first case the typical
E/ T is around 40 GeV; while in the latter case it is generally above 200 GeV.

For the W → eν analysis we follow the strategy similar to that laid out in CMS Note
2007/026, and for LM1 we follow CR2007/053. W → eν must first pass the single isolated
electron HLT trigger, and we then require GSF electrons of pT > 20 GeV with mild isolation
and ID requirements. In addition, for the purpose of exploring MHT Significance, we require
the event to contain at least one jet because SH isn’t defined otherwise. For LM1 there must
be three or more jets (pT 1,2,3 > 180, 110, 30 GeV). The analysis cuts are deliberately kept
simple to illustrate generic characteristics. Signal samples are CSA07, background samples
are CSA07 Gumbo and Chowder:

/Wenu/CMSSW_1_6_7-ReRecoIdeal-1198082363/RECO

/CSA07Electron/CMSSW_1_6_7-CSA07-Tier0-A1-Gumbo/RECO

/LM1_sftsdkpyt/CMSSW_1_6_7-CSA07-1200560744/RECO

/CSA07JetMET/CMSSW_1_6_7-CSA07-Tier0-A1-Chowder/RECO

In each of the two physics cases we examine the distributions for SH and MHT, and construct
plots of signal efficiency versus background efficiency for two different analysis strategies:
cutting only on MHT, or cutting only on SH (above and beyond the cuts noted above). The
results are shown in the four panels of Fig. 1. For W → eν the scatterplot of SH versus
MHT in panel (a) indicates that W → eν signal events exhibit large SH at the expected
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MHT ∼ 40 GeV, and correspondingly the signal efficiency versus background efficiency
shown in panel (b) confirms that the SH cut is the (slightly) more favorable choice. The
non-smoothness in the efficiency curves in panel (b) is due to the use of weighted events in
the background sample. For LM1, the scatter plot in panel (c) reveals that SH will have
little impact on the analysis as MHT is by itself an effective variable and significance has
little to add. The efficiency plot in panel (d) shows that in fact the SH cut is less useful than
the direct cut on MHT for this mode.

(a) (b)

(c) (d)

W->enu W->enu

SUSY - LM1
SUSY - LM1

Figure 1: (a) SH versus MHT for W → eν; (b) signal efficiency versus background efficiency
for W → eν; (c) SH versus MHT for LM1; (d) signal efficiency versus background efficiency
for LM1.
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