Question 1: The quadrupole

We discuss some properties of the quadrupole and see some examples.

1. Show that
 \[T_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} \left(\frac{1}{r} \right) = \frac{(3\hat{r}_i \hat{r}_j - \delta_{ij})}{r^3} \]
 and write it explicitly as a 3×3 matrix.

2. We now consider a set of 4 point charges, 2 of charge $+q$ and 2 of charge $-q$, arranged in corners of a square, as shown in Fig. 2-6, p. 56 of Heald and Marion. Choose a coordinate system with the origin at the center of the square, as in the figure. Show that the potential of this charge configuration at a distance $r \gg L$ from the origin has vanishing monopole and dipole moments and that the leading order term is the quadrupole, and write Q_{ij} explicitly as a 3×3 matrix.

Answer: We write
 \[\Phi(r) \approx \frac{1}{6} Q_{ij} (3x_i x_j - r^2 \delta_{ij}) = \frac{1}{6} Q_{ij} \left(\frac{3\hat{r}_i \hat{r}_j - \delta_{ij}}{r^3} \right), \]
 where $i, j = 1, 2, 3$ and x_i’s are the components of r in a rectangular coordinate system. Using this normalization
 \[Q_{ij} = 3 \sum_{\alpha} q_{\alpha} x'_{\alpha,i} x'_{\alpha,j} \]
 (Some of you may use different normalization and/or subtract the trace, for example
 \[Q_{ij} = \sum_{\alpha} q_{\alpha} x'_{\alpha,i} x'_{\alpha,j}, \quad \text{or} \quad Q_{ij} = 3 \sum_{\alpha} q_{\alpha} (x'_{\alpha,i} x'_{\alpha,j} - r^2 \delta_{ij}) \]
 All of these are OK as long as you remember to use the correct formula for the potential.
Let us find the

Monopole: \[\sum_{\alpha=1}^{4} q_\alpha = q + q - q - q = 0 \]

Dipole: \[\sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,1} = +q \frac{L}{2} + q \left(-\frac{L}{2} \right) = 0 \]
\[\sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,2} = (-q) \frac{L}{2} + q \left(-\frac{L}{2} \right) = 0 \]
\[\sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,3} = 0 \]

Quadrupole: \[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,1} x'_{\alpha,1} = +3q \left(\frac{L}{2} \right)^2 + 3q \left(-\frac{L}{2} \right)^2 = 3qL^2 \]
\[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,2} x'_{\alpha,2} = 0 \]
\[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,1} x'_{\alpha,3} = 0 \]
\[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,3} x'_{\alpha,1} = 0 \]
\[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,2} x'_{\alpha,2} = 0 \]
\[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,1} x'_{\alpha,3} = 0 \]
\[3 \sum_{\alpha=1}^{4} q_\alpha x'_{\alpha,3} x'_{\alpha,3} = 0 \]

We see that the largest surviving term is the quadrupole, with

\[Q_{ij} = \frac{3qL^2}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
\[\Phi \approx \frac{3qL^2}{4} \frac{x^2_1 - x^2_2 + r^2}{r^5} = \frac{3qL^2}{4} \frac{x^2_1 - x^2_2}{r^5} \]
It is conventional to remove the trace of the matrix by subtracting the matrix Q by $Q_{ii}1$, but in this case, the trace is zero, so it doesn’t matter.

3. Write Φ is spherical coordinate, that is, $\Phi(r, \theta, \phi)$

Answer: In spherical coordinates

$$\Phi = \frac{3qL^2}{4} \frac{r^2 \sin^2 \theta \cos^2 \phi - r^2 \sin^2 \theta \sin^2 \phi}{r^5} = \frac{3qL^2 \sin^2 \theta \cos(2\phi)}{4} \frac{1}{r^3}$$ (7)

4. Find the approximate expression (again at $r \gg L$) for the electric field \vec{E} of this charge configuration, in spherical coordinates. (See H&M Eq. (A.49) for the expression of the gradient in spherical coordinates.)

Answer: Now we take the gradient in polar coordinates to find \vec{E}.

$$E_r = -\frac{\partial \Phi}{\partial r} = \frac{9qL^2 \sin^2 \theta \cos(2\phi)}{4} \frac{1}{r^4}$$

$$E_\theta = -\frac{1}{r} \frac{r}{\partial \theta} \frac{\partial \Phi}{\partial \theta} = -\frac{3qL^2 \sin \theta \cos \theta \cos(2\phi)}{2} \frac{1}{r^4}$$ (8)

$$E_\phi = -\frac{1}{r \sin \theta} \frac{\partial \Phi}{\partial \phi} = \frac{3qL^2 \sin \theta \sin(2\phi)}{2} \frac{1}{r^4}$$

5. We now consider a similar setup but where all the charges are positive. Find the monopole, dipole and quadropole moments for that setup.

Answer: The total charge is $Q = 4q$. The dipole vanishes, and the quadrople is

$$Q_{ij} = \frac{3qL^2}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ (9)

or if we subtract the trace

$$Q_{ij} = \frac{qL^2}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$ (10)

Question 2: More on Multipoles
Consider a charge distribution as shown in the picture below. \((q_0\) in the middle, \(q_1 + q_2\) at \(a\) and \(-q_1 + q_2\) at \(-a\) on the \(z\) axis, and \(-q_2\) at \(±a\) on the \(x\) axis.) We define \(d = q_1a\) and \(m = q_2a^2\).

1. We first consider the situation where \(q_2 = 0\) and \(q_1 ≫ q_0\). For generic values of \(θ\) and \(ϕ\), there is a crossover radius \(r_C\) such that as we vary \(r\), the potential \(Φ\) becomes dominated by the monopole term once \(r\) crosses \(r_C\). Give a rough estimate of \(r_C\) in terms of the parameters given in the question, and state whether the monopole dominates when \(r\) is above or below \(r_C\).

Answer:
When \(q_2 = 0\), we basically have a monopole \(q_0\) and a dipole in the \(z\)-direction with dipole moment \(\vec{p} = 2q_1a\hat{z} = 2\hat{d}\). The combined potential is then

\[
Φ = \frac{q_0}{r} + \frac{2d \cos \theta}{r^2}
\]

Roughly speaking, ignoring factors of 2 and so on, the monopole dominates when

\[
\frac{q_0}{r} > \frac{d}{r^2}
\]

\[
⇒ r > \frac{d}{q_0} = a\frac{q_1}{q_0} ≡ r_C
\]

Common mistakes:
Including a \(\cos θ\) dependence, since we are only asking for a typical scale using the parameters of the question.

2. Still consider the same situation where \(q_2 = 0\) and \(q_1 ≫ q_0\). Now we discuss the electric field \(\vec{E}\). Are there specific values of \(θ\) where the monopole term is always the most important one, regardless of whether \(r\) is above or below \(r_C\)? For these values,
specifically indicate for which component of \(\vec{E} \) (that is \(E_r \), \(E_\theta \) and \(E_\phi \)) this is the case.

Answer:
Since the monopole electric field is radial, this can only occur for the radial components of \(\vec{E} \). The radial component of the electric field is given by taking \(-\frac{\partial}{\partial r}\) of the potential

\[
E_r = \frac{q_0}{r^2} + \frac{4d \cos \theta}{r^3} \tag{13}
\]

The monopole term can dominate even for very small \(r \) if the angle \(\theta \) is such that \(\cos \theta \) is close to zero, i.e. when \(\theta \approx 90^\circ \).

Common mistakes:
Some of you noticed that the dipole contribution to \(E_\theta \) vanishes at \(\theta = 0^\circ \) and \(180^\circ \), so you thought that the monopole contribution to \(E_\theta \) will dominate at these angles. However, the monopole doesn’t contribute to \(E_\theta \) at all!

3. We now consider the \(q_2 \neq 0 \) case and assume that \(q_0 \sim q_2 \) and \(q_1 \gg q_0 \). Explain why there is no range of \(r \) values where the quadrupole term is generically the dominant contribution to the potential \(\Phi \). Remember that we only consider values of \(r \gg a \).

Answer:
Roughly speaking, keeping only the radial dependence, we have

\[
\Phi \sim \frac{q_0}{r} + \frac{d}{r^2} + \frac{m}{r^3} \tag{14}
\]

The quadrupole dominates the monopole when \(r^2 \lesssim m/q_0 = a^2q_2/q_0 \sim a^2 \), and the dipole when \(r \lesssim m/d = aq_2/q_1 \ll a \). Since we are considering \(r \gg a \), it is impossible to dominate the monopole nor dipole term.

Common mistakes:
Incomplete arguments. E.g. some of you said that since the quadrupole term has a higher \(\frac{1}{r^2} \) dependence, and \(r \gg a \), hence it cannot dominate. This is incomplete because you also have to discuss the strength of the quadrupole (i.e. point out that \(q_2 \sim q_0 \ll q_1 \)). For instance, back in Part 1, the dipole still dominated the monopole for \(a \ll r < r_C \) despite a higher \(\frac{1}{r} \) dependence, because we had \(q_1 \gg q_0 \). The same could have happened for the quadrupole had we considered a different scenario with \(q_2 \gg q_1 \).

4. Still, within the same situation (\(q_0 \sim q_2 \) and \(q_1 \gg q_0 \)), even though the quadrupole term is never the dominant term in the potential, it still cannot be neglected for a generic point with \(r \gg a \), since there are some physical observables which only the quadrupole potential can generate. Explain why it indeed cannot be neglected by identifying such an observable.
Answer:
The quadrupole potential is the only one that generate a finite E_φ component, since neither the monopole or dipole terms contribute to it.

Common mistakes:
We specifically asked for a physical observable, but some of you only mentioned that the quadrupole term breaks azimuthal symmetry, without mentioning an observable.