08/01/2006
<<< 07/31/2006
Check the qsub jobs
One warning in the line shape params fit:
Warning: wrong member access operator '.' FILE:/home/xs32/work/CLEO/analysis/DHad/script/Roofit/lineshapefit2d.C LINE:319
But the output txt file is still OK. (Only for one file, all the others are bad, unfortunately.)
Update the line shape parameters for Mass = 3.77 GeV
DHadTable.py -a line_shape_parameters
Update the older one:
08/02/2006
Resubmit the line shape paras fit
Test DHadFit.py -t d —tag d -p diag_floatmass_fitparams_floatsigmaE_M_3.774
Found the place where pause the process from going.
sys.exit() after the first mode.
submit the job. qsub DHadFit_d_d_diag_floatmass_fitparams_floatsigmaE_M_3.774.sh job 468322 ... Done.
Line shape parameters for Mass = 3.774 GeV
DHadTable.py -a line_shape_parameters -o M_3.774
Fit the mBC distribution for sideband events
Use the Argus background shape
08/03/2006
Check the line shape paras fit
OK.
Params Table
DHadTable.py -a line_shape_parameters -o M_3.774
Compare with the Mass = 3.770 GeV Version, the difference is not that much.
Use Argus background shape the mBC distribution of sideband events
Test DHadFit.py -t d -p desidebandl_forceCombine
08/22/2006
Fit the mBC distribution for sideband events
- Now focusing on Mass = 3.774 GeV
Test DHadFit.py -t d -p desidebandl_forceCombine_M_3.774 -m 0
08/23/2006
Fit the mBC distribution for sideband events
- Set "num_fcn = 0" in the .C file in the Roofit will only use the background.
- Add bkgOnly as the option
- Use if (num_fcn != 0) to control the output
- Set forceCombine and M = 3.774 as the default in DHadFit.py
- Set the num_fcn = 0 when desideband
- DHadFit.py -t d -p desidebandl -m 0 ... OK.
- qsub DHadFit_d_desidebandl.sh job 484669 ... Done
- sideband low
- Test the desidebandh
- DHadFit.py -t d -p desidebandh -m 0 ... OK
- qsub DHadFit_d_desidebandh.sh job 484670 ... Done
- sideband high
- Create table comparing the parameters from low and high
- DHadTable.py -a desideband DeltaE sideband parameters comparison
- Use sideband low params to do the fit
- DHadFit.py -t d -p p_xi_fixl ... OK
- qsub DHadFit_d_p_xi_fixl.sh job 485507 ... Done
- Use sideband high params to fit
- DHadFit.py -t d -p p_xi_fixh ... OK.
- qsub DHadFit_d_p_xi_fixh.sh job 485520 ... Done
08/24/2006
Issues after the meeting
1. Make the tables for comparison 2. desideband table NBkgd fix 3. Add chi^2 evaluation in the fit
- Create the table for comparison of yields from low regular high
- DHadTable.py -a yield_desideband_regular
08/25/2006
Table of comparison yields
DHadTable.py -a yield_desideband_regular
desideband table NBkgd fix
- DHadFit.py -t d -p desidebandl -m 0 ... OK.
- DHadFit.py -t d -p desidebandl —qsub job 489914 ... Done.
- DHadFit.py -t d -p desidebandh —qsub job 489915 ... Done.
08/28/2006
Generic MC fit for the sideband
Parameters for sideband low and high
- DHadFit.py -t g -p desidebandl -m 0 ... OK.
- DHadFit.py -t g -p desidebandl —qsub job 493292 ... Done.
- desideband low
- DHadFit.py -t g -p desidebandh -m 0 ... OK.
- DHadFit.py -t g -p desidebandh —qsub job 493293 ... Done.
- desideband high
Use sideband low params to do the fit
- DHadFit.py -t g -p p_xi_fixl ... OK
- DHadFit.py -t g -p p_xi_fixl —qsub job 493300 ... Done.
- Fix p xi use desideband low
- DHadFit.py -t g -p p_xi_fixh ... OK
- DHadFit.py -t g -p p_xi_fixh —qsub job 493304 ... Bad
Floatmass fitparams float sigmaE for signal MC
- DHadFit.py -t s —tag d -p diag_floatmass_fitparams_floatsigmaE OK
DHadFit.py -t s —tag d -p diag_floatmass_fitparams_floatsigmaE —qsub job 493294 ... Done.
08/29/2006
Check the previous fits
- DHadFit.py -t g -p p_xi_fixh —qsub job 493995 ... Done.
Make the comparison table for the generic MC
DHadTable.py -a yield_desideband_regular -o generic
Waiting for the fitting results ... Done.
08/30/2006
It is interesting that in most (but not all) modes you see the same trends in data and MC. E.g. looking at the mode K-pi+pi+pi0 (and charge conj.) we see that using the sideband shape the yield goes down by 2 to 3%. The interesting question to look at in the generic MC sample is which yields (standard fit or fit with the background shape fixed from the side band) agree best with the signal MC. I.e. calculate the efficiency that you get in the generic MC and compare to the signal MC. Can you make this comparison?
Create Efficiency table for generic using sideband paras
- desideband low
- DHadTable.py -a desideband_generic_Single_eff -o low
- desideband low
- desideband high
- DHadTable.py -a desideband_generic_Single_eff -o high
- desideband high
- compare low , high and regular
- DHadTable.py -a compare_regular_desideband_low_high
- Compare ``e_sig/e_gen -1'' for regular low and high
08/31/2006
Next Steps
- Chi^2 for every plot
/home/srs63/K0Finder/fits/M2missFit.c
TPaveText ...
- Examine the fits for Floatmass fitparams float sigmaE
change 0.4 to 0.5 for example for mode 203 to have a better ``f1a''
- Do not use f1b and s1b for modes without pi0
- desideband high and low for generic MC in mode 0
- plot deltaE vs. mbc for all the whole region
- plot the generic with out the signal in it by using the MC truth info.
>>> 09/01/2006